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In the present work we introduce the family of anisotropic equatorial waves. This family corresponds to

equatorial waves at intermediate states between the shallow water and the long wave approximation

model. The new family is obtained by using anisotropic time/space scalings on the linearized, unforced

and inviscid shallow water model. It is shown that the anisotropic equatorial waves tend to the solutions

of the long wave model in one extreme and to the shallow water model solutions in the other extreme of

the parameter dependency. Thus, the problem associated with the completeness of the long wave model

solutions can be asymptotically addressed. The anisotropic dispersion relation is computed and, in

addition to the typical dependency on the equivalent depth, meridional quantum number and zonal

wavenumber, it also depends on the anisotropy between both zonal to meridional space and velocity scales

as well as the fast to slow time scales ratio. For magnitudes of the scales compatible with those of the

tropical region, both mixed Rossby-gravity and inertio-gravity waves are shifted to a moderately higher

frequency and, consequently, not filtered out. This draws attention to the fact that, for completeness of the

long wave like solutions, it is necessary to include both the anisotropic mixed Rossby-gravity and inertio-

gravity waves. Furthermore, the connection of slow and fast manifolds (distinguishing feature of

equatorial dynamics) is preserved, though modified for the equatorial anisotropy parameters used

d [ S0,1�. New possibilities of horizontal and vertical scale nonlinear interactions are allowed. Thus, the

anisotropic shallow water model is of fundamental importance for understanding multiscale atmosphere

and ocean dynamics in the tropics.

DOI:10.1029/2011MS000078

1. Introduction

Recently, there has been increased attention to multi-scale

dynamics for atmosphere/ocean problems [McWilliams and

Gent, 1978, 1980; Zebiak, 1982; Gill and Phlips, 1986; Schopf

and Suarez, 1990; Majda and Klein, 2003; Biello and Majda,

2005; Klein and Majda, 2006; Khouider and Majda, 2006,

2007; Raupp and Silva Dias, 2009; Ramı́rez Gutiérrez and

Silva Dias, 2009]. Multi-scale dynamics constitutes a power-

ful tool for understanding some key aspects of complex

systems that involve many physical and dynamical pro-

cesses. In atmosphere-ocean problems the relevant phenom-

ena are organized in a wide, although well defined, spectrum

of time and space scales (e.g., Pacific Decadal Oscillation

(PDO), El Niño, the Madden-Julian oscillation, etc), some

of which are still poorly understood. Consequently, it

is difficult to conclude why the state-of-the-art complex

models are still having problems in the prediction and

simulation of some key features of these multi-scale phe-

nomena. The tropical region is an important component of

the earth system; it is in that region of the globe where

most of the solar radiation is incident. The temperature

gradients are weak and, unlike midlatitude dynamics,

where baroclinic instability is the main energy source for

large-scale weather systems, the scale-interactions involving

clouds, moisture and coupling to the ocean play the major

role in generating synoptic and planetary wave distur-

bances in the tropics [Majda and Klein, 2003; Majda,
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2007]. The degeneracy of the Coriolis force at the equator

leads to the behavior of this region as a wave guide

[Matsuno, 1966]. The b-plane long wave approximation

is one of the simplest tools to capture the trapping

behavior of the wave guide. However, the long wave

approximation fails to give us a complete set of solutions

and, consequently, it is limited for multiscale nonlinear

interaction studies. In the present work, anisotropic scal-

ings are used in the equatorial b-plane shallow water

equations. These scalings exploit the fact that the wave

guide is elongated in the east-west direction. Thus there

exists an anisotropy between the zonal (u) and meridional

(v) components of the velocity field. When the ratio

v=uð Þ?0, the long wave approximation emerges. Gill

[1980] used the long wave approximation to obtain some

simple forced solutions in the equatorial primitive equa-

tions, and showed that the Kelvin and non-dispersive

Rossby waves are the eigensolutions of the long wave

approximation. However, the completeness of these solu-

tions has not been proved. In addition, experience tells us

that the ratio v=u is in general small but not so close to

zero for large to planetary scale tropical phenomena [e.g.,

Schubert et al., 2009]. Thus, it appears necessary to under-

stand the equatorial wave dynamics at intermediate states

between the shallow water and the long wave approxi-

mation and to analyze the completeness of the solutions.

Precisely, Ramı́rez Gutiérrez et al. [2011] analyzed the

nonlinear three-wave interaction in the anisotropically

scaled equatorial b-plane shallow-water equations using

moderate values of the anisotropy parameter. In their

approach, the dispersion properties as well as the spatial

structure of the equatorial wave modes were assumed to be

unaffected by the anisotropy parameter, with the aniso-

tropy modifying only the nonlinear interactions among the

isotropic eigenmodes. They showed that for a given res-

onant triad, the nonlinear energy exchange is longer in the

long wave regime than in the shallow water one. These

results were confirmed independently in both theoretical

and numerical frameworks.

In the present work, we extend the results of Ramı́rez

Gutiérrez et al. [2011] by considering the modifications of

the dispersion properties of the equatorial waves by the

anisotropy of the spatial scales in the equatorial waves. For

this purpose, we introduce in the equatorial b-plane shal-

low-water equations an anisotropy parameter (d), which is a

measure of both the meridional to zonal velocity and spatial

scale ratio, as well as a measure of the fast to slow time scale

ratio (for simplicity they are taken to be equal). Then, the

linearized anisotropic shallow water model is solved. New

dispersion curves are obtained for the Kelvin, Rossby, mixed

Rossby-gravity and inertio-gravity waves. Implications of

this d dependency for the completeness of the eigensolutions

is discussed in section 4. The anisotropic shallow water

model, or equivalently the long wave like approximation, is

more likely to occur in the tropical region.

2. Governing Equations

We begin with the nonlinear, unforced and inviscid shallow

water equations on the equatorial b plane in their dimen-

sional form, as given by

Lt uzv:+u{byvzgLxH~0, ð1aÞ

Lt vzv:+vzbyuzgLyH~0, ð1bÞ

Lt Hzv:+HzH+:v~0, ð1cÞ

where H~ �HHzg, with �HH the mean thickness of the fluid

layer and g the thickness perturbation due to wave activity.

For the atmosphere it is common to use the approxima-

tion w~gg, where w is the geopotential perturbation. Ripa

[1983a] discussed an appropriate expression for g in both

atmospheric and oceanic models. The equatorial Coriolis

parameter is represented by by. The equations can be

nondimensionalized by using units of length and time

according to

L~ C=bð Þ1=2, T~ Cbð Þ{1=2, ð2Þ

where C is either the atmospheric or oceanic first baroclinic

wave speed defined in Table 1. It must be noted that there

exist other definitions for the length and time scales in use,

for instance: R~ 2C=bð Þ1=2; ~vv~C=R~ Cb=2ð Þ1=2
. It can

be easily verified that ~vv{1*T and R*L (in fact

~vv{1~
ffiffiffi
2
p

T ,R~
ffiffiffi
2
p

L). Other forms in use are 2pR and

2p~vv{1. Although any of these leave invariant the ratio

L=T , the precise definition of the time and space units

changes the magnitudes of the scalings.

Using (2) we obtain the nondimensionalized and scaled

variables given in (3), and also given by, e.g., Pedlosky

[1987], Dijkstra [2000], and Majda [2002]. Note that as d

varies in the range 0vdƒ1, the zonal coordinate and time

are large scale and slow time scale respectively, whereas the

meridional velocity is diminished by the scaling.

x’~ L=dð Þx; y’~Ly; t ’~ T=dð Þt ;

u’~Cu; v’~dCv; H ’~ C2=gð ÞH ; g’~g:
ð3Þ

Dropping the primes, the system of equations (1) with the

anisotropic scalings becomes

Lt uzuLxuzvLyu{yvzLxg~0, ð4aÞ

Table 1. Typical Values of the First Baroclinic Gravity Wave
Speed C, Mean Thickness of the Fluid Layer �HH , Rossby
Deformation Radius L and Time Scale T

C �HH L T
(m/s) (m) (km) (hours)

atmosphere 50 250 1507.6 8.3
ocean 2.2 0.49 316.23 39.9
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d2 Lt vzuLxvzvLyv
� �

zyuzLyg~0, ð4bÞ

Lt gzuLxgzvLygz 1zgð Þ LxuzLyv
� �

~0: ð4cÞ

3. The d-Modified Equatorial Waves

Linearization around a motionless basic state and the

assumption of traveling wave solutions of the form

ei kx{vtð Þ, with k and v representing zonal wavenumber

and frequency respectively, yields the following eigenvalue

problem for the meridional structure:

{ivûu{yv̂vzikĝg~0, ð5aÞ

{d2ivv̂vzyûuzLy ĝg~0, ð5bÞ

{ivĝgzikûuzLy v̂v~0: ð5cÞ

It is possible to re-write the eigenvalue problem given by (5)

in the matrix form

{iv {y ik

y {d2iv Ly

{ik Ly {iv

0
B@

1
CA

ûu

v̂v

ĝg

0
B@

1
CA~0: ð6Þ

Solving the matrix

0
Ly

k
{

y

v

ik

v
{

iv

k

y
ik

v
{

iv

k

� �
{Ly

Ly

k
{

y

v

� �
{id2v

ik

v
{

iv

k

� �
0

i k2{v2ð Þ kLy{vy 0

0
BBBBBB@

1
CCCCCCA

ûu

v̂v

ĝg

0
BB@

1
CCA~0,

ð7Þ

it follows from the third row that

i k2{v2
� �

ûu~ vy{kLy

� �
v̂v: ð8Þ

Substitution of (8) into the second row of the matrix leads

to:

y
y

k
{

dy

v

� �
v̂v{

dyy

k
{

1

v
{

ydy

v
{kd2zd2 v2

k

� �
v̂v~0: ð9Þ

Re-arranging (9) yields

d2v̂v

dy2
z d2v2{d2k2{

k

v
{y2

� �
v̂v~0: ð10Þ

Boundary conditions require vanishing solutions as jyj??.

Thus, (10) results in the well known second order differ-

ential equation for decaying Hermite polynomials [see

Hochstrasser, 1972]. Solutions of (10) are given by

v̂vn yð Þ~yn yð Þ~ Hn yð Þ
2nn!p1=2ð Þ1=2

e{y2=2, ð11Þ

with yn being the Hermite functions and Hn the Hermite

polynomials. The problem of finding the eigenfrequencies is

reduced to the algebraic equation (12)

d2v2{d2k2{
k

v
~2nz1, ð12Þ

with n a non-negative integer given by n~ 0,1,2, . . .f g.
There is a special case for the equatorial waves known as

Kelvin wave. These modes are characterized by being mer-

idionally geostrophic but zonally ageostrophic. Although

this mode can not be obtained from the (7)–(10), it can

be recovered by using n~{1 in the dispersion relation

(12), as will be shown in subsequent sections.

Equation (12) gives up to three different solutions for v
for k,n, and d specified. To obtain analytic expressions for

these solutions, we shall use the limiting cases that are

frequently found in the bibliography [Matsuno, 1966;

Wheeler, 2002]. However, numerical solutions of the para-

metric dispersion relation (12) were also computed. The

results are displayed in Figures 1 and 2. Although the

Figure 1. d-modified equatorial waves, Rossby and inertio-gravity
waves, for fixed n~1 (symmetric), Kelvin n~{1 and mixed
Rossby n~0. All the waves are for H~250m, corresponding to
the atmosphere first baroclinic mode. Frequencies and zonal
wavenumbers are truncated in the display to 8 and 5 respectively.
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eastward/westward asymmetry of the inertio-gravity waves

are not captured in the limiting case, the dependency of the

equatorial waves on the d parameter seems to be well

represented. Thus, we will use the analytic expressions for

our subsequent analysis.

3.1. Slowness Space

Some other properties of the family of anisotropic equat-

orial waves can be readily seen if we use the slowness space

[Ripa, 1982, 1983a, 1983b]. In the slowness space the square

of the eigenfrequency (v2) is a simpler function of the

slowness parameter s~ k=vð Þ than of the zonal wavenumber

k. Furthermore, the equatorial wave types are more clearly

distinguishable in slowness space, as can be seen in Figure 3.

The dispersion relation in the slowness d-space is given by

v2~
2nz1zs

d2 1{s2ð Þ
: ð13Þ

When d~1, the slowness dispersion relation of Ripa [1982,

1983a, 1983b] is recovered. The equatorial waves in slowness

space are displayed schematically in Figure 3, where the

anisotropic (d-dependent) equatorial wave types are dis-

played in terms of sC, with C, the first baroclinic wave speed

and s~ 1=c
dð Þ

p

	 

the reciprocal of the d dependant phase

speed c
dð Þ

p .

3.2. The d-Inertio-gravity Waves

For the high frequencies (k
v %1), (12) reduces to

v2&
2nz1

d2
zk2, ð14Þ

which is the dispersion relation for d-modified inertio-

gravity waves (or d-modified Poincaré waves). Figure 4 dis-

plays the d-inertio-gravity waves for n~1 and the equivalent

depth of the first baroclinic mode. Note that as d?0, v grows

rapidly for any value of k. The larger the anisotropy (smaller

d), the larger the gravity wave frequency. It is also possible to

note by comparing Figures 1, 4, and 5 that inertio-gravity

dispersion curves become less convex as v increases.

3.2.1. Spectral Occupation and Asymptotic Limits

The d-inertio-gravity wave phase speed (c
dð Þ

p ) is given by

c
dð Þ

p ~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nz1

d2k2
z1

r
: ð15Þ

Asymptotic limits for (15) as k?? are given by

lim
k??

c
dð Þ

p ~
? for d?0 faster than k??ð Þ,
1 for k?? faster than d?0ð Þ:

�
ð16Þ

Thus, for dominant values of anisotropy, the inertio-

gravity phase speed becomes very large. The second case

reveals asymptotic convergence towards the non-dimen-

Figure 2. Numerically computed d-modified equatorial waves,
Rossby and inertio-gravity waves, for fixed n~1 (symmetric),
Kelvin n~{1 and mixed Rossby n~0. All the waves are for
H~250m, corresponding to the atmosphere first baroclinic
mode. Frequencies and zonal wavenumbers are truncated in
the display to 8 and 5 respectively.

Figure 3. Schematic dispersion diagram for the b plane equat-
orial waves in the d~1 dimensional slowness space. The disper-
sion relation used is: v2~bc 2nz1zsCð Þ= 1{ sCð Þ2

� �
where c

represents the velocity of the fastest allowed baroclinic mode for
a given equivalent depth. The different equatorial waves are
labeled by R Rossby, G inertio-gravity, K kelvin, M mixed
Rossby-gravity wave. Open circle means asymptotic conver-
gence. M and eastward G waves asymptotically converge
towards the K wave speed (c). Westward G waves converge
towards {c. The fastest R wave is three times slower than {c.
M waves connects R and G modes.
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sional fastest baroclinic mode phase speed. The eigen-

frequency of the anisotropic Poincaré modes is given by

v dð Þ~kc
dð Þ

p ~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nz1

d2
zk2

r
: ð17Þ

For k~0, the rate of growth due to the anisotropy is 1=d. To

estimate the value of v dð Þ for large values of k and small

values of d, it is possible to approximate v dð Þ by

v dð Þ& 2nz1ð Þ1=4

ffiffiffiffiffi
2k

d

r
: ð18Þ

Thus, for k=0, v(d) increases at a rate of 1=
ffiffiffi
d
p

. Since

1=dw1=
ffiffiffi
d
p

, as was already noted, the eigenfrequency v(d)

becomes less convex for smaller values of d (Figure 4).

Following (16), the slowness space parameter sC is also

twofold as noted in

lim
k??

sC~
0 for d?0 faster than k??ð Þ,
1 for k?? faster than d?0ð Þ:

�
ð19Þ

In the first case, the d inertio-gravity wave phase speed

becomes very large for small values of d, but is equal to the

first baroclinic wave speed for large values of k. Further

discussion about the slowness space parameter behavior in

connection to the mixed Rossby-gravity waves is presented

in the following sections.

3.3. The d-Rossby Waves

Concerning the other limiting case of small frequencies

(v2?0), (12) becomes

v&
{k

2nz1ð Þzd2k2
, ð20Þ

which is the d-modified equatorial Rossby wave dispersion

relation. For small values of d, the behavior of (20) is

twofold. Thus, (20) converges to the non-dispersive

Rossby wave frequency for small values of k, and tends to

zero for large values of k. The precise inflection point of the

dispersion curves of the Rossby waves is larger in absolute

value as d decreases. Precisely, when d?0 only a monotonic

curve close to the non-dispersive Rossby wave is noted (see

Figures 1, 6, and 7). This characteristic precludes the

representation of short Rossby waves in the classical long

wave approximation [Ripa, 1994; Schubert et al., 2009].

3.3.1. Spectral Occupation and Asymptotic Limits

For Rossby waves c
dð Þ

p ~{1= 2nz1zd2k2
� �

. Thus, taking

d~1 the traditional phase speed is recovered (c
dð Þ

p :cp). For

k~0, the d~1 phase speed cp~{1= 2nz1ð Þ and the

max cp

� �
~{1=3 corresponds to n~1, which is the

minimum meridional quantum number allowed. For any

other n, cpƒ{1=3. This upper limit is also valid for

c
dð Þ

p ƒ{1=3, implying that as k?0 the phase speed of the

Figure 4. d-modified equatorial inertio-gravity wave for fixed
n~1, H~250m (first baroclinic mode).

Figure 5. d-modified equatorial waves, Rossby and inertio-
gravity waves are for fixed n~2 (asymmetric), Kelvin n~{1

and mixed Rossby n~0. All the waves are for H~250m,
corresponding to the atmosphere first baroclinic mode.
Frequencies and zonal wavenumbers are truncated to 8 and 5
respectively.
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anisotropic Rossby waves is smaller than the phase speed of

the nondispersive Rossby wave.

Conversely, for k?? we have:

lim
k??

c
dð Þ

p ~

{1

2nz1
for d?0 faster than k??ð Þ,

0 for k?? faster than d?0ð Þ:

8<
: ð21Þ

For dominant values of d, the nondispersive Rossby wave

behavior of the phase speed is obtained. In contrast, for

dominant values of k the phase speed tends to zero in

agreement to what is obtained for traditional equatorial

Rossby waves. Thus, the basic differences between the

shallow water and the long wave approximation model in

terms of Rossby waves are summarized in (21). The d
parameter dependency of the waves’ phase speed makes

somewhat elegant the passage from one limit to the other. In

fact, it shows that it is possible to obtain convergence

towards the phase speed of the ultra long Rossby waves

even for increasingly large values of k depending on the d
that is at work (Figure 6). Similar results can be deduced

using the dimensional slowness parameter (sC) defined by

sC~
{ 2nz1ð Þ for d?0 faster than k??ð Þ
{? for k?? faster than d?0ð Þ:

�
ð22Þ

3.4. The d-Mixed Rossby Gravity (n 5 0)

Using n~0 in the dispersion relation (12) and factoring

vzkð Þ yields

vzkð Þ v2{vk{
1

d2

� �
~0: ð23Þ

The v~{k solution does not satisfy the equatorial trap-

ping boundary condition and, therefore, must be disre-

garded [Matsuno, 1966; Moore et al., 1998; Ripa, 1994].

On the other hand, the quadratic polynomial factor in (23)

determines two branches given by

v+~
1

2
k+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2z

4

d2

r� �
: ð24Þ

These branches correspond to the dispersion relation of the

d{mixed Rossby-gravity wave and its complex conjugate.

Dispersion curves for the d-modified equatorial waves can

be found in Figures 1 and 5. The most outstanding effect of

the anisotropy parameter d is on the mixed Rossby-gravity

waves, because it leads to the existence of a family of mixed

Rossby-gravity waves. Thus, a family of connections of the

slow and fast manifolds of the equatorial waves dynamics is

introduced by the anisotropy.

3.4.1. Spectral Occupation and Asymptotic Limits

The mixed Rossby-gravity wave phase speed is given by

c
dð Þ

p ~0:5 1z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1z4= d2k2

� �q	 

. The asymptotic behavior of

Figure 6. d-modified equatorial Rossby wave for fixed n~1,
H~250m (first baroclinic mode). The non-dispersive Rossby
mode correspond to d~0.

Figu re 7. d-modif ied Equator ia l waves for varying
H~f250,125,62:5gm; fixed d~0:7, and meridional quantum
number n~1 for Rossby and inertio gravity waves, n~0 for
mixed Rossby-gravity and n~{1 for Kelvin waves.

6 Ramı́rez Gutiérrez et al.
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c
dð Þ

p is given by

lim
k??

c
dð Þ

p ~
? for d?0 faster than k??ð Þ,
1 for k?? faster than d?0ð Þ:

�
ð25Þ

Thus, sC also has a twofold limit that is exactly the same as

in (19), i.e.,

lim
k??

sC~
0 for d?0 faster than k??ð Þ,
1 for k?? faster than d?0ð Þ:

�
ð26Þ

The eigenfrequency of the d mixed Rossby-gravity wave-

modes is given by v~0:5 kz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2z4=d2

q� �
. For k?0, the

anisotropic eigen-frequency is proportional to 1=d. The rate

of increase is equal to that of the inertio-gravity waves.

Further, comparing (25) and (26) with (16) and (19), one

notes that the asymptotic behavior of mixed Rossby-gravity

and inertio-gravity waves are also the same. Using the results

displayed here together with the results of section 4.2, it is

possible to conclude that the spectral space occupation, i.e.,

connection of ‘slow’ and ‘fast’ modes, is not lost with the

anisotropy of the horizontal scales. The results presented

here allow us to conclude that, even when equatorial waves

of the shallow-water model are different from those of the

long wave like approach, the differences can be properly

parameterized using the anisotropy parameter d. Thus, it is

possible to infer the existence of an asymptotic completeness

of the long wave model solutions.

3.5. The d-Kelvin Wave

Another wave that is not formally obtained from equation

(12), but can be recovered from it by choosing n~{1 is the

Kelvin wave. Its dispersion relation is given by

v~k: ð27Þ

The meridional structure for Kelvin waves is given by

ûu yð Þ~ĝg yð Þ~ûu 0ð Þe{y2=2; v̂v yð Þ~0. It is interesting to note

that Kelvin waves are not modified by the anisotropy,

because (27) is invariant under the transformation:

dv?v, ð28aÞ

dk?k: ð28bÞ

This invariance has implications for nonlinear interactions

in the equatorial wave-guide, as will be pointed out below.

4. Family of Anisotropic Equatorial Shallow Water
Waves

4.1. Analysis of the Spectrum

Figure 1 displays the family of equatorial waves that are

obtained for some values of the anisotropy parameter d. The

selected values of the anisotropy parameter are representative

of the ratio v=u in the tropical wave guide (e.g., u~

20m=s,v~5m=s (in the atmosphere) or u~1:0m=s,

v~0:25m=s (in the ocean) gives d~0:25). Both d-inertio-

gravity and d-Rossby waves resemble their shallow-water

counterparts for some values of n (meridional quantum

number), though differences are noticeable through careful

inspection. Inertio-gravity waves become higher in fre-

quency for increasing values of n. Conversely, d-inertio-

gravity waves are shifted to higher frequencies for decreas-

ing values of d. This can be more easily seen if one looks at

the inflection point that divides eastward and westward

inertio-gravity wave dispersion curves. For d-Rossby waves,

as d increases (decreases) the modes tend to be more (less)

restricted in the frequency domain. For d-mixed Rossby-

gravity waves it is possible to note that as d diminishes, the

mixed-Rossby waves are shifted to higher frequencies. This

makes d-mixed Rossby-gravity waves cross other waves’

dispersion curves. Precisely, this behavior makes possible

new connections of either: a) Rossby waves of different d’s,

b) inertio-gravity waves of different d’s or c) both, Rossby

and gravity waves of different d’s. The crossing points

occur mainly to the left of the Kelvin wave dispersion

curve. The Kelvin wave is a special case as it is invariant

under the scaling (28). Thus, Kelvin waves of different d’s

all coincide. The crossing curves are an indication that the

anisotropic nonlinear equations (4) allow a broader spec-

trum of horizontal resonant wave interactions (nonlinear

N-wave interactions, resonant interactions with harmonics,

etc) than the nonlinear shallow-water equations studied by

Ripa [1983a] and Raupp and Silva Dias [2006]. The many

scales involved in the intersecting curves also suggest the

possibility of the existence of shallow water turbulence in

the domain of varying d (chains of interacting waves/

clusters of resonant wave triads). For the sake of illustra-

tion, in Figure 1 it can be noted for the window selected

that the d~0:25 mixed Rossby-gravity dispersion curve

connects the d~0:7 and 0:5 symmetric n~1 westward

inertio-gravity waves. Other possible interaction involves

the d~0:5 mixed Rossby-gravity, d~0:7 eastward gravity

and the d~0:15 and 0:25 n~1 Rossby waves. The impact

of d in nonlinear resonant three wave interactions of

anisotropic equatorial waves was studied by Ramı́rez

Gutiérrez et al. [2011].

4.2. Spectral Space Occupation

Recall that the equatorial b-plane is distinguished from the

mid-latitude b-plane, because the frequency spectrum is

fully occupied by the presence of the mixed Rossby-gravity

waves. The mixed Rossby-gravity wave connects fast (iner-

tio-gravity) and slow (Rossby) manifolds of the equatorial

region. This is an aspect that is not observed in the mid-

latitude b-plane, as was pointed out by Matsuno [1966]. The

connection between slow and fast manifolds is possible

because there exists a critical wavenumber k~kCr such that

for kvkCr (kwkCr ) the mixed Rossby-gravity wave behaves
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as a Rossby (inertio-gravity) wave. Moreover, this critical

kCr is connected with Lv=Lk~0 for both Rossby and

inertio-gravity waves [Pedlosky, 1987; Cane and Sarachik,

1976]. Thus, if we compute the modification of the inflec-

tion point for the Rossby waves by the d-parameter, and if it

is at the same rate that the modification of the mixed

Rossby-gravity waves, the distinguishing feature of the

equatorial b-plane related to the connection between

the fast and slow manifolds is not lost with the inclusion

of the anisotropy between zonal and meridional scales. To

demonstrate this, let us compute the inflection point for the

Rossby wave via

Lv

Lk
~

k2d2{ 2nz1ð Þ
2nz1ð Þzd2k2

� �2
~0, ð29Þ

so that

kCr~{
2nz1ð Þ1=2

d
ð30Þ

and

vmax kð Þ:v kCrð Þ~ 1

2d 2nz1ð Þ1=2
: ð31Þ

For fixed n, as d decreases, kCr decreases (larger in absolute

values), whereas v kCrð Þ increases. The growth rate of

v kCrð Þ is similar to the growth rate of the mixed Rossby-

gravity wave (*1= 2dð Þ). Thus, the connection between

the slow and fast modes is preserved by the effect of the

anisotropy of the scalings. Furthermore the ratio vmixed=
vRossby is given by

vmixed

vRossby

� �
jk~kCr

~ { 2nz1ð Þ1=2+ 2nz1z4ð Þ1=2
h i

2nz1ð Þ1=2, ð32Þ

and is independent of d, which means that their growth rates

are always proportional to each other. On the other hand,

for Rossby waves at fixed values d, the well known behavior

of the dispersion curves is recovered. For instance, as n

increases kCr decreases and vmax kð Þ:v kCrð Þ decreases.

The results presented here suggest that the full frequency

occupation in wavenumber continues to be valid in the

equatorial b-plane region for values of d smaller than one

(anisotropic scalings). Furthermore, small values of d are

physically more reasonable than d~0, as is typically used in

the long wave approximation. This feature suggests that

completeness in the long wave approximation can only be

attained if we re-include the inertio-gravity and mixed

Rossby-gravity waves. Implications for the nonlinear wave-

wave interactions are analyzed in the next section.

5. Resonant Triads in the Anisotropic Shallow
Water Model

To determine the number of nonlinearly interacting

resonant triads allowed by (4), it is necessary to use the

resonance conditions in the dispersion relation of one of

the triad members. This leads to a family of polynomials

labeled by d. The procedure is explained as follows. First

of all we define the variables Na~2gaz1zsa and

Da~1{s2
a . The dimensionless dispersion relation can be

re-written as

v2
a~

Na

d2
aDa

: ð33Þ

The subscript (a) labels any of the triad members. The other

two members are labeled by (c) and (b). The conditions for

resonance are vc~vazvb and vc sc~vasazvbsb, respect-

ively. The second condition is the slowness space repres-

entation of kc~kazkb. Introducing resonance conditions

into (33) we obtain

d2
c vazvbð Þ2{d2

c vasazvbsbð Þ2~Nc : ð34Þ

Performing binomial expansions and using (33) for waves a

and b; and then re-arranging equation (34) we obtain

2d2
c vavb 1{sasbð Þ~ Nc{d2

c Na=d2
a{d2

c Nb=d2
b

� �
: ð35Þ

Let (c) be the member with the intermediate slowness of the

triad. Thus, this is the wave that gives/receives energy to/

from the other two components. In such a case its slowness

is given by

sc~
savazsbvb

vazvb

: ð36Þ

Using equation (36) together with the definition of Nc in

equation (35) and then factoring va and vb, we obtain

d2
c 2vavb 1{sasbð Þf g{2 nc{

d2
c na

d2
a

{
d2

c nb

d2
b

 !
{

"

1{
d2

c

d2
a

{
d2

c

d2
b

 !
{sazd2

c

sa

d2
a

z
sb

d2
b

 !#
va~

{ d2
c 2vavb 1{sasbð Þf g{2 nc{

d2
c na

d2
a

{
d2

c nb

d2
b

 !
{

"

1{
d2

c

d2
a

{
d2

c

d2
b

 !
{sbzd2

c

sa

d2
a

z
sb

d2
b

 !#
vb:

Multiplying all the terms in (37) by DaDb, re-arranging the

first term of each side of the equality sign, then squaring

both sides and using (33) for the labels a and b to eliminate

the v dependency, we get
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d2
c

2Nb

d2
b

1{sasbð Þ
" #

{DbBba

" #2
NaDa

d2
a

~

d2
c

2Na

d2
a

1{sasbð Þ
" #

{DaBab

" #2
NbDb

d2
b

, ð37Þ

where,

Bab~2 nc{
d2

c na

d2
a

{
d2

c nb

db

" #
z 1{

d2
c

d2
a

{
d2

c

d2
b

" #
z

sa{d2
c

sa

d2
a

z
sb

d2
b

 !
, ð38Þ

and Bba is obtained by exchanging a<b. Thus,

F sa,sb; da; db; dcð Þ~ d2
c

2Nb

d2
b

1{sasbð Þ
" #

{DbBba

" #2
NaDa

d2
a

{

d2
c

2Na

d2
a

1{sasbð Þ
" #

{DaBab

" #2
NbDb

d2
b

~0: ð39Þ

To solve (39) it is necessary to fix the three d parameters and

one of the slowness parameters. Even so, the resulting

polynomial is of the 9th degree in s. This gives us an idea

of the complexity of the problem of finding resonant triads.

For the case of d~da~db~dc ; Bab is independent of d
and F sa,sb; da; db; dcð Þ becomes

F sa,sb; dð Þ~ F sa,sbð Þ
d2 ~ 2Nb 1{sasbð Þ½ �{DbBba

� �2NaDa

d2 {

2Na 1{sasbð Þ½ �{DaBab

� �2NbDb

d2
~0: ð40Þ

Thus, for interacting waves within the same anisotropic

family, the number of different possible interactions is

independent of d. However, for interacting waves of differ-

ent families, the anisotropy must be considered. The poly-

nomial F sa,sbð Þ was studied by Ripa [1983a], who found

nineteen different types of triad interactions. The results of

Ripa [1983a] are equivalent to solving (39) for a fixed d.

6. Family of Waves for Varying Vertical Structures
and Anisotropy

Finally, in this section we extend the anisotropic shallow

water waves to the equatorial primitive equations with

discrete vertical structures. The dispersion relation used to

plot Figure 7 was computed following the methodology

described in the previous sections, but starting from the

equatorial primitive equations subjected to rigid vertical

boundary conditions. The specific expression is written in

(41), where m2 is the separation constant of the vertical and

horizontal structures. A derivation of this expression

depending on m, but not on d, is given by Pedlosky [1987]

(Chapter 8). Here the same equation, but with the explicit

dependency on d, is given by

d2v2m{
d2k2

m
{

k

mv
~2nz1: ð41Þ

It is worth mentioning that under the transformation

(dvm1=2?v); (dk=m1=2?k) the traditional dispersion rela-

tion is recovered, that is, v2{k2{k=v~2nz1. This point

is associated with the fact that the shallow water model is

valid for the different baroclinic structures with the proper

equivalent depth.

Figure 7 displays part of the wave families obtained by

varying the equivalent depth ( �HH), while keeping d~0:7
fixed. In contrast to previous sections, a modification of

the Kelvin wave is noted; this is due to its dimensional

dispersion relation v~
ffiffiffiffiffiffiffi
g �HH

p
k. Crossing curves occur near

the Kelvin wave and the involved modes are the mixed

Rossby-gravity, Kelvin and Eastward inertio-gravity waves.

The overlapping of the curves is indicative of the existence

of resonant wave interactions of the scattering type invol-

ving equatorial waves associated with different vertical

structures, since each intersection establishes a resonant

triad composed of a zonally symmetric geostrophic mode

and the modes associated with the intercepting dispersion

curves. In this type of interaction, the zero-frequency mode

allows the two propagating waves to exchange energy but is

unaffected by the interacting modes [Raupp and Silva Dias,

2006]. It is noticeable that by varying �HH , inertio-gravity

waves are modified in such a way that they tend to diverge

from each other at larger k’s, in contrast to what is obtained

by varying d, where inertio-gravity waves tend to converge

(compare with Figure 1). Although not shown, it can also be

noted that there is an overlapping of both families: the

vertically varying and the anisotropic equatorial waves for

several wavenumbers and frequencies. Due to the asso-

ciation of these intersections with scattering resonant triad

interactions, the overlapping of both families suggests the

possibility of the existence of a large number of triads in the

anisotropically scaled equatorial primitive equations. Also,

the intersections might suggest a possible tendency for a

more symmetric wave turbulence spectrum, since the elastic

scattering interactions act in general to symmetrize the

spectrum of weakly interacting waves [McComas and

Bretherton, 1977]. Nonetheless, due to the high number of

degrees of freedom associated with the interaction spectrum,

it is not trivial to predict the statistical equilibrium state of

the interacting modes to the full extent of all the interac-

tions, except probably by means of numerical computations.

However, some recent works suggest that key features of

phenomena like the MJO, El Niño, and the PDO can be

explained as the result of a restricted set of horizontal and

vertical interacting modes [Raupp and Silva Dias, 2006,

2009; Ramı́rez Gutiérrez and Silva Dias, 2009; Kartashova

and L’vov, 2007]. In addition, the long wave model has been
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used in theoretical multi-scale models of the MJO and

convectively coupled equatorial waves [Biello and Majda,

2005; Majda and Stechmann, 2009; Klein and Majda, 2006],

and references therein. Thus, the results presented here can

contribute to better understanding of the nonlinear inter-

actions in a context more related to the tropical region,

where anisotropy is predominant.

7. Concluding Remarks

The anisotropic shallow water model (4) represents an

intermediate regime between the shallow water and the long

wave equation models. The asymptotic limits of the aniso-

tropic shallow water model are the shallow water equations

for d~1 and the long wave equations for d~0. It was shown

in the present work that the transition from one regime to

the other can also be verified in the dispersion relation of the

d-modified equatorial Rossby wave. For moderate to large

values of d, the anisotropic Rossby wave dispersion relation

tends to the non-dispersive Rossby wave (westward prop-

agating) dispersion curve for small values of the zonal wave

number k, and tends to the dispersive Rossby wave (east-

ward propagating) for large values of the zonal wavenum-

ber. However, for small values of d (close to zero), the

Rossby wave only tends to the non-dispersive Rossby wave

regime, irrespective of the value of the zonal wave number

(k). In fact, Rossby waves for small values of d are bending

towards their asymptotic limit at a rate of 1=2d (computed

at the critical wavenumber kCr
). The critical wavenumber

represents the inflection point that divides eastward (dis-

persive Rossby) and westward (non-dispersive) Rossby

waves. The critical wavenumber was computed for the

anisotropic shallow water model and it was found that kCr

is also a function of 1=d. Thus, as d decreases, the kCr

becomes large in absolute value, yielding the enlargement of

the frequency spectrum of the non-dispersive Rossby waves.

As a consequence, in the limiting case d~0, only non-

dispersive Rossby waves are allowed.

Notwithstanding, for values of d computed for typical

values of the scales found in the tropical region, both mixed

Rossby-gravity and inertio-gravity waves must be re-

included to complete the set of orthonormal basis functions.

The completeness allows exact representation of any state of

the model, which constitutes a required property for non-

linear interaction studies. The computation of the disper-

sion relation for all the waves reveals that, with the exception

of the Kelvin wave, all the modes are modified by the d
parameter. As discussed in this paper, the predominant

characteristic is that the mixed Rossby-gravity and the

inertio-gravity modes are shifted to higher frequencies as d
decreases. It was found that even when the d mixed Rossby-

gravity wave is shifted to higher frequencies, it continues to

connect slow and fast manifolds. The ratio between the d-

Rossby and d-mixed Rossby-gravity wave frequencies com-

puted at kCr
is independent of d. An important point of our

analysis that has not been previously found is that the

anisotropy of the zonal and meridional spatial scales pro-

duces a family of mixed Rossby-gravity waves that enables

new possible connections between slow and fast manifolds.

The connections are represented by intersections of the

dispersion curves. Thus, all the new dispersion curve inter-

sections are indicative of the possibility of new non-linear

wave-wave interactions. To verify the implications of the

anisotropic scalings for non-linear wave-wave interactions,

we have computed the nonlinear resonant triad interaction

condition for the d-modified equatorial wave modes.

Following the approach of Ripa [1983a] for the isotropic

shallow-water equatorial waves, we have used the dispersion

relation to express the resonance condition in terms of a

polynomial that determines the number of resonant triads.

The polynomial determines the possible resonant triads for

the general case of interacting families (different d’s) of

equatorial waves if the three d parameters and one of the

interacting modes are fixed. The resulting polynomial is of

nine degree in the slowness space parameter. This approach

gives an idea of the complexity and diversity of possible new

resonant triad interactions. For the special case of interact-

ing modes of the same anisotropic family, the polynomial

reduces to the same polynomial found by Ripa [1983a],

which has nineteen different types/combinations of triads.

Due to the fact that the d parameter represents different

space and time scales, the results obtained here have a

potential application for multi-scale nonlinear interactions.

The asymptotic nature of the long-wave model solutions

obtained from the complete shallow water model solutions

guarantee the exact representation of any state. Ramı́rez

Gutiérrez et al. [2011] studied the nonlinear interactions for

realistic though conservative estimates of d. In their approach,

the dispersion properties, as well as the spatial structure of the

equatorial wave modes, were assumed to be unaffected by

the anisotropy parameter, with the anisotropy modifying only

the nonlinear interactions among the isotropic eigenmodes.

They found that there is an effective modification of both the

nonlinear slow energy and amplitude modulations in the

anisotropic resonant triad interactions.

In some earlier studies on equatorial wave response to

prescribed forcings, there were indications of the existence

of the family of anisotropic equatorial waves [e.g., Gill, 1980;

Zebiak, 1982; Webster, 1972; Silva Dias et al., 1988]. How-

ever, in those studies the results were linked to the response

to a prescribed forcing. Here, an unforced model was used

and the results reveal that the anisotropy introduces mod-

ifications in both the dispersive properties of the waves and

their nonlinear wave-wave interactions. The asymptotic

method adopted here also avoids the introduction of an

approximation to the local time derivative of the meridional

momentum equation used by Schubert et al. [2009] to break

the strictly meridional geostrophic balance implied in the

long wave approximation.

The anisotropy was also considered for the case of the

dispersion relation of the stratified primitive equation
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model. In this case, crossing curves occur near the Kelvin

wave and the involved modes are the mixed Rossby-gravity,

Eastward inertio-gravity and the Kelvin waves. Once again,

the overlapping of the curves is indicative of at least the

existence of resonant wave interactions of the scattering type

(zonally symmetric geostrophic mode and the dispersive

modes associated with the intercepting curves). There was

found an overlapping of both families, the vertically varying

and the anisotropically scaled shallow water wave modes,

suggesting the existence of a larger number of triads and

probably a more symmetric wave turbulence spectrum in

the anisotropic equatorial wave dynamics. Although it is not

trivial to predict the statistical equilibrium state produced

by all the possible non-linear interactions, it is argued that

this state might be close to the dominant modes of the

tropical variability associated with the MJO, El Niño, and

the PDO.
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