
Pinpointing Malicious Activities through Network and System-level
Malware Execution Behavior

André Ricardo Abed Grégio1 , Paulo Lício de Geus2 (Orientador) , Mario Jino3 (Orientador)
1CTI Renato Archer - MCT

2LAS - IC - Unicamp
3DCA - FEEC - Unicamp

argregio@cti.gov.br, paulo@las.ic.unicamp.br, jino@dca.fee.unicamp.br

Abstract – Malicious programs pose a major threat to Internet-connected systems, increasing the importance of
studying their behavior in order to fight against them. In this article, we propose definitions to the different types of
behavior that a program can present during its execution. Moreover, based on these behaviors, we define suspicious
behavior as the group of actions that change the state of a target system. We also propose a set of network and
system-level dangerous activities that can be used to denote the malignity in suspicious behaviors extracted from
a large set of actual malware samples and evaluate them in the context of these activities. Finally, we developed a
system to translate from low-level execution traces to the proposed dangerous activities.

Keywords – Computer Security; Malware Analysis

1. Introduction
Malicious software is a major threat to Internet-
connected systems. This kind of software ranges
from worms and trojan horses to rootkits and bots
and is generically referred to as malware. Thou-
sands of malware variants are created periodically,
hindering their analysis and the creation of vaccines
by antiviruses companies. Moreover, publicly avail-
able dynamic analysis systems such as Anubis [5],
CWSandbox [7], Norman [1] and ThreatExpert [2]
provide reports filled with too many technical de-
tails and/or too much information in a slew of activ-
ities that can confuse the user on judging the malig-
nity of an analyzed sample.

We propose a more generalized and abstract
approach to describe malicious activities based on
high-level behavior observed on malware samples.
Thus, we can bridge lower-level and specialized ac-
tions, such as a kernel function call or a write oper-
ation performed into a specific registry key, to un-
derstandable, identifiable high-level activities that
characterize suspicious behavior. This can be use-
ful to allow the identification of malware variants,
to speed up incident response and to help in the de-
velopment of malware removal procedures.

Additionally, we have tested our proposed
behavioral filters on a large set of actual malware
samples that were gathered from malware collection
honeypots [6] and spam attachments and then exe-
cuted in our analysis system. At the end of this pro-
cess, we pinpoint the malicious activities obtained
from these samples and leverage results that allow
us to analyze nuances among malware from differ-

ent sources and types.

2. Behavioral Traces

To the extent of this work, we use behavioral traces
to pinpoint the main activities performed by a pro-
gram. In this section we explain the procedure used
to extract a behavioral trace so as to identify ma-
licious activities and also define different forms of
“behavior” in the scope of this article.

2.1. Data Processing

The first step to extracting a behavioral trace from
a malware sample is to run it in a controlled en-
vironment and to monitor the important security-
related actions performed during a limited execution
time. As the prevalent kind of current malware tar-
gets Microsoft Windows-based systems, we chose
them as the main focus of interest. Hence, we de-
veloped a tool that captures selected system calls
through SSDT hooking [4] on an emulated system
(the guest) and registers them onto a file on a base
system (the host).

To process a behavioral trace we need to
translate the monitored system calls into meaning-
ful actions. This is done to facilitate the interpre-
tation of the extracted behavior, as in some cases
more than one system call may represent a single
operation. Each action is represented by a number
of attributes: the timestamp, to identify the action’s
position in the chain of captured events, the source
process, which represents an action’s performer,
the operation— i.e., the type of interaction, like



CreateProcess, DeleteFile and ConnectNetwork—
between the source and the target of that operation.

The advantage of processing system calls
in this way is that when several routines serve to
the same purpose, we map them to a single opera-
tion. For example, if an action’s goal is to delete
a file, this can be accomplished by ZwOpenFile,
ZwDeleteFile or ZwSetInformationFile
with carefully crafted values as their parametersBy
abstracting from the particular variant chosen by the
monitored program, we are able to present a much
more meaningful result, that is, a DeleteFile op-
eration.

2.2. Definitions of Behavior
The general behavior of a program consists of the
set of actions performed during its execution by an
operating system. In the previous section we de-
fined an action based on some attributes (timestamp,
source, operation, target). Thus, an action “α” is
a tuple composed by the values of the aforemen-
tioned attributes and can be represented as α =
{ts, src, op, tgt}. Therefore, to define a behavior
we proceed as follows. Let B be the general behav-
ior of a malware sample Mk, and AMk be the set of
N actions αi performed during its execution, so that
AMk = {αi}i=1..N and B(Mk) = AMk .

The actions that compose a behavior can be
divided into groups according to their nature: if an
action interferes with the environment, i.e. changes
the state of the system, it is part of an active subset
of the behavior. This is the case of actions that in-
volve a file write, delete or creation, for instance.
Otherwise, the action is passive, meaning that it
gathered a piece of information without modifying
anything, for example, read, open or query some-
thing.

However, there is a subset of the general be-
havior that is neutral, whose actions can be active
or passive, but that do not lead to a malign outcome.
The neutral behavior contains common actions that
are performed during a normal execution of any pro-
gram, such as to load standard system libraries, to
read or to configure registry keys and to create tem-
porary files.

2.3. Suspicious Behavior
When a malicious program is executed, every ac-
tion that is performed can be considered suspicious.

These actions constitute a suspicious behavior that,
when analyzed, may reveal important details related
to the attack. For instance, a malware sample that
downloads another piece of malicious code and use
it to spread itself has to connect to a machine, to
write the file containing the malicious code on the
compromised system and to create the process of
the downloaded file that will handle the spreading
process.

Thus, we are only interested in actions that
modify the state of the compromised system (the
active subset of the behavior, that is, BA) and we
want to avoid the actions that are considered nor-
mal to a program’s execution (the neutral behavior,
that is, BN ). To this end, we define the suspicious
behavior of a malware sample Mk as BS(Mk) =
BA(Mk) − BN (Mk). From the analysis of each
extracted BS(Mk), we derive a set of network and
system-level actions that represent dangerous activ-
ities as regards the security of a system.

3. Malicious Activities
During execution, a software piece interacts actively
and passively with the operating system. Thus, be-
nign software presents active behavior such as cre-
ating new registries, writing values to registry keys,
creating other processes, accessing the network to
send debug information or to search for updates,
downloading and writing new files etc.

Therefore, as any piece of software does,
malware interact with the operating system in the
same way. However, malware interactions cause un-
desired changes on the operating system; they must
be detected to allow for a damage report and to be-
gin an incident response procedure.

Hence, it is necessary to pinpoint the ac-
tions that correspond to dangerous or malicious ac-
tivities, so as to allow better understanding of the
malware diversity. To do this, we defined an ini-
tial set of network and system-level activities that
present a certain level of risk and that can be ob-
tained from selected actions extracted from the sus-
picious behavior.

3.1. Network-level Risky Activities

Evasion of Information. Information related to the
operating system or the user can be evaded through
the network, such as the hostname, hardware data,



network interface data, OS version and username.
An attacker can make use of this information to
choose targets for an attack, or to map his com-
promised machines (e.g., zombie computers that are
part of a botnet). In a directed attack, sensitive doc-
uments may be stolen and transferred to an FTP
server, for instance.

Scanning. To find possible targets to spread
to, a worm needs to perform a scan over the net-
work. This involves the search of known vulnerable
services or unprotected/open network applications.

DoS. There are classes of malware, such as
bots, whose malicious features include flooding at-
tacks to perform denial of service (DoS). This is of-
tenly done through the sending of an overwhelming
amount of UDP packets, for example, by the nodes
(infected machines) of a botnet.

Downloading. Some kinds of malware are
composed by several pieces that execute specialized
tasks. Thus, the first piece—the downloader—is re-
sponsible for downloading the other components,
such as libraries, configuration files, drivers or in-
fected executable files. This compartimentalization
is also used by malware developers to try to avoid
antivirus or other security mechanisms.

E-mail Sending A malicious program can
communicate with its owner through e-mail to an-
nounce the success of an attack or to send out sen-
sitive data from the compromised machine. Also, a
compromised machine can be used as an unsolicited
e-mail server, sending thousands of spam on behalf
of an attacker that is being paid for the service.

3.2. System-level Risky Activities
Name Resolution File Modification. A trojan can
modify the network name resolution file to for-
ward users to a compromised server and lure them
into supplying their data. These can be credentials
(e-mail, online banking, Web applications such as
Facebook and Twitter) or financial information (ac-
count number and password, credit card number).
This modification allows a kind of malware com-
monly known as “banker” to have a user access a
fake online banking site, for example.

Evidence Removal. Some malware dis-
guise themselves as system processes to deceive se-
curity mechanisms or forensic analysis; they can
“drop” a file that was embedded in a packed way

inside their main file or download the actual ma-
licious program from the Internet. In some cases,
these droppers/downloaders remove the evidence of
compromise, deleting the installation files after the
attack. On the other hand, a malware sample that
is able to identify that it is being analyzed can also
remove itself from the system.

Security Mechanisms Corruption. To
ease compromising a target system, malware au-
thors usually try to identify and terminate security
mechanisms. This activity can be accomplished by
turning off the system firewall or known antivirus
engines, through the termination of their processes
and removal of related registry keys.

Driver Loading. Drivers are kernel mod-
ules that access the most privileged level of a sys-
tem. A driver makes the interface between the oper-
ating system and the hardware, such as network in-
terfaces, graphic cards and other devices. However,
drivers are also used by rootkits, a kernel-level kind
of malware that can hide their processes, files and
network connections in order to remain undetected.

4. Experimental Results
We collected 1,641 malware samples from July,
2010 to July, 2011—463 from honeypots (collector)
and 1,182 from spam (phishing)—and executed
them in our dynamic analysis environment, which
is a Qemu-emulated [3] MS Windows XP SP3, pro-
ducing a behavior trace for each sample. We then
applied the behavioral filters described in Section 3.
to the traces and analyzed the network- and system-
level malicious activities. In Section 4.1., we dis-
cuss the malicious activities observed over the full
malware set.

4.1. Malicious Activities’ Pinpoint
The purpose of the behavioral filters is to map
suspicious actions performed by a program to in-
telligible activities. These filters provide high-level
and useful information about a malware sample
execution and describe its presented behavior.
For example, if a malware sample tries to turn
off the security mechanisms natively running on
a Windows OS to avoid detection and weaken
the machine defenses, it commonly launches
a script that performs some shell commands,
such as net stop “Security Center”,
net stop SharedAccess and netsh



firewall set opmode mode=disable.
Also, a sample might perform changes on
FirewallPolicy\StandardProfile
registry keys, setting a “0” as the value of the
EnableFirewall parameter.

This kind of action causes a positive match
against our behavioral filter and leverages, in
the particular aforementioned example, “Security
Mechanism Corruption” as a malicious activity
found in the evaluated sample. When the “pinpoint-
ing” process is finished, we have lists of danger-
ous (and potentially malicious) activities attributed
to our malware dataset. This process applied to the
complete dataset produced the results from Table 1,
divided by source (phishing or collector).

Table 1. Malicious activities discovered
through the pinpointing process of our collec-
tion (P = Phishing and C = Collector); sum
may be higher than 100%.

Level Activity P (%) C (%)
Evasion 3.72 6.69
Scan 14.21 50.54

Network DoS 37.22 29.37
Download 1.10 9.07
E-mail 1.95 3.45
Hosts File 1.10 0.43
Evidence 15.06 4.32
Security Bypass 4.48 5.18
Driver 5.16 0

We notice that most of the analyzed mal-
ware samples perform the same set of malicious ac-
tivities, in disregard for their source. Those activ-
ities are attempts to scan networks for vulnerable
services or UDP flooding at the network-level and
self-removal and security mechanism bypass at the
system-level. From the samples that came from our
collectors, 15.15% did not present any behavior, ei-
ther due to crashing on execution, to corrupted bi-
naries or to analysis evasion. From the samples ob-
tained by e-mail crawling (phishing set), 12.01% ei-
ther presented an incomplete trace or did not match
any of our defined suspicious behaviors.

5. Conclusion
In this paper, we proposed to define malware
through their execution behavior. Our definition
of suspicious behavior denotes dangerous activities

performed at the network and system-level and en-
compasses only those that cause changes to the tar-
get system’s state. We leveraged intelligible activi-
ties whose main goals are to help with incident re-
sponse, to increase the understanding of malware
analysis reports and to allow the behavioral classi-
fication of malware samples. To validate our ap-
proach, we tested a dataset composed by malware
actually seen in the wild and collected from differ-
ent sources. To this end, we built behavior filters
that translated system calls to malicious activities,
which were attached as an intermediate layer in our
dynamic analysis system in order to bridge the se-
mantic gap. As for the future, we are working on a
classification process based on the behavioral filters
we defined in this work, as well as on more precise
definitions of risky activities to enhance the ability
to do a better classification.

References
[1] Norman Sandbox. http://www.norman.

com/security_center/security_
tools/.

[2] ThreatExpert. http://www.
threatexpert.com/.

[3] Fabrice Bellard. Qemu, a fast and portable dy-
namic translator. In USENIX Annual Techni-
cal Conference, FREENIX Track, pages 41–46,
2005.

[4] Greg Hoglund and James Butler. Rootkits—
Subverting the Windows Kernel. Addison-
Wesley, 2006.

[5] Christopher Kruegel, Engin Kirda, and Ul-
rich Bayer. TTAnalyze: A tool for analyzing
malware. In Proceedings of the 15th Euro-
pean Institute for Computer Antivirus Research
(EICAR 2006) Annual Conference, April 2006.

[6] Niels Provos and Thorsten Holz. Virtual hon-
eypots: from botnet tracking to intrusion de-
tection. Addison-Wesley Professional, first edi-
tion, 2007.

[7] Carsten Willems, Thorsten Holz, and Felix
Freiling. Toward Automated Dynamic Malware
Analysis Using CWSandbox. IEEE Security
and Privacy, 5:32–39, March 2007.


