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Abstract. Quality control of climate data obtained from weather sta-
tions is essential to ensure reliability of research and services based on
this data. One way to perform this control is to compare data received
from one station with data from other stations which somehow are ex-
pected to show similar behavior. The purpose of this work is to evaluate
some visual data mining techniques to identify groupings (and outliers of
these groupings) of weather stations using historical precipitation data
in a specific time interval. We present and discuss the techniques’ details,
variants, results and applicability on this type of problem.
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1 Introduction

Observational data obtained from weather stations is important due to its use on
generating weather and climate numeric predictions, evaluating models results
and making climatic research [1], so having reliable data is an essential issue
to make reliable research and applications. However, the data is not completely
reliable: some weather stations are still human operated, which often are subject
to reporting errors; and even the automatic ones depend on hardware and net-
work communication which can pollute the data [2]. A quality control system is
clearly required to verify the data’s quality.

At the Brazilian National Institute for Space Research’s (INPE) CPTEC
(Brazilian National Center for Weather Prediction and Climate Studies) there
is a 3-level quality control system for weather stations data. The first approach
verifies whether the data is inside upper and lower limits to the variable; the
second uses arbitrary geographic rectangular regions and limits on the variables
on these regions, and the third one uses limits for each variable and specific
weather station. These controls aims to reject spurious data and classify suspi-
cious data [3].

The problem with these approaches is that the bounds used (for the variable
and geographic regions) are not natural and can filter important data from
datasets for analysis. Moreover, the number of rejections increases the work of
the data administrator that need to analyze, one by one, all the rejected data.
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Clearly some other methods that help meteorologists interpret the vast amount
of data in search for potential suspicious data are required. This work presents
some possible algorithms and implementations based on visual data mining to
accomplish this task.

This paper is divided in the following sections: Section 2 presents some visual
data mining concepts relevant to this work. Section 3 presents the data used
in this study and its relevant features. Sections 4 and 5 presents two of the
algorithms that were selected for implementation of the visual data mining tasks.
Section 6 presents some conclusions and directions for future work.

2 Visual Data Mining

Visual data mining can be defined as the set of techniques and approaches used
to extract and understand the information encoded in data sets using the human
visual perception system as part of the data processing task [4,5]. Visual data
mining may help uncover or highlight data features, may make the understanding
of the features easier and speedier and may be used to cross-validate conclusions
obtained through other methods [6,7].

The difference between visual data mining and traditional data visualization
is somehow blurred: for our purposes we consider that visual data mining tasks
involve the processing of the data with one or more data mining algorithms
and that visualization is done over the original data together with information
obtained from those algorithms. Visual data mining may also be considered one
of the components of exploratory data analysis (EDA) and strongly related to
visual analytics [8,9].

Visual data mining tools and approaches are used in several knowledge do-
mains, including analysis of environmental, geophysical and atmospheric data
[6,10,11], which are relevant to our interests.

3 Data

The data we want to mine and visualize is inherently spatio-temporal: time series
collected from sensors with geographical coordinates associated. The data was
selected from a database containing daily precipitation data for all Brazil, with
a total of 115 million records and with some weather stations having more than
100 years of recorded data.

In order to evaluate the visual data mining techniques we’ve selected only data
from stations on the state of São Paulo, and created for each station a time se-
ries containing the monthly accumulated precipitation. Only stations that could
yield at least 25 readings in a month were considered. The final database con-
tained data from 1.341 weather stations (including geographic coordinates and
altitude) with a time series with 84 entries corresponding to monthly accumu-
lated precipitation. The data for each weather station covers the same period in
time.
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Several visualization techniques can be used to get some basic information
about the behavior of this type of data. The most frequently used are time series
plots [10] or parallel coordinates plots [12] (with each horizontal axis mapped
to a time coordinate). Figure 1 shows a plot of all data from the 1.341 weather
stations. From Figure 1 we can see monthly and global extrema and get a feeling

Fig. 1. Time series plot of the data used in this work

of the behavior of the whole set of time series: there are periods with more and
less accumulated precipitation which are more or less correspondent to the wet
and dry seasons. At the same time we can observe that there isn’t a clear global
maxima or minima, and visual identification of which station is providing data
outside of a range is not trivial. Although this kind of plot provides some general
information about the series it does not conveys any information of behavior
similarity (or anomalies) between stations – in other words we cannot infer
whether two or more stations have similar or different behaviors nor identify
geographically close weather stations – this is important because we expect that
weather patterns have a geographic extent and that would influence data from
stations that are close to this pattern.

Since the data is inherently geographic (stations’ coordinates are points in
space), it is natural to visualize them overlaid in a map. The problem is that the
data associated to each point in the map is a multidimensional time series – in
order to visually identify behavior similarity we would need to reduce the time
dimension or extract fewer features from it so it can also be plotted in the map
and used for visual comparison with other points in the map.

In this work we investigate two approaches to extract features from the time
series that can be used in for visual data mining: the first is based on a common
clustering algorithm and the other on a well-known dimensionality reduction
algorithm. These techniques and results are presented in Sections 4 and 5.

4 Fuzzy C-Means Clustering

Fuzzy C-Means [13,14] is an iterative algorithm that attempts to minimize an
objective function J defined as:

J =

n∑

k=1

c∑

i=1

µm
ik|xk − vi|2 , m > 1 (1)
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Where xk is the k-th data vector, vi is the i-th cluster center vector, c is the
number of clusters, n is the number of points in the data, µ is the membership
values’ table or matrix which contains the membership values for all points in
all clusters; which indicates to which degree or extent the data vector xk belongs
to the cluster vi, and m is a fuzziness value. The membership values are subject
to the conditions 0 ≤ uik ≤ 1 and

∑c
i=1 uik = 1 for all k.

One problem with the Fuzzy C-Means algorithm is the definition of its param-
eters. In particular two parameters are often defined experimentally: the number
of clusters C and the fuzziness factor m. Of those, determination of a suitable m
is relatively easy: when m is close to 1 the algorithm behaves like the non-fuzzy
K-Means; while when m is large enough all data may have equal membership in
all clusters. For some applications empirical values of m between 1.5 and 2.5 are
suggested [15,16].

C, the number of clusters, is often empirically determined, although some
metrics of cluster validity may be employed to find a suitable value for C. Three
of those metrics are the partition coefficient, the partition entropy and the com-
pactness and separation metrics [14]. These metrics are calculated after the data
is clustered with several values of C and the best metric for a particular C can be
used (maximum value for partition coefficient; minimum value for the others).

In order to use the Fuzzy C-Means algorithm to map the time series into a
fixed number of clusters we’ve executed experiments with some values of m and
several values of C to determine the best values for clustering. Five arbitrary
values were used for m (1.01, 1.125, 1.25, 2.5, 5), while values from 2 to 25
were used for C. Other parameters for the algorithm that control the number of
interactions were left large enough to ensure convergence. From this experiment
we’ve concluded that for large values of m (≥ 2.5) the results were practically
indistinguishable, which led us to use m = 1.25. Determination of C was harder
since there wasn’t a single value of C that was a clear minima or maxima for
the validity measures. We’ve used C = 13 as it seemed slightly better than other
possible values accordingly to the compactness and separation metric.

The Fuzzy C-Means algorithm will yield two results we want to use to reduce
the time dimension in our data for visual mining: a discrete cluster number that
will be used to select distinct colors for plotting and the maximum membership
value for each data vector. This value is obtained from the rows in the matrix µ
and ranges from 1/C to 1, where higher values indicate stronger membership in
a given cluster, and can be considered an indicator of quality of clustering for
a particular data vector. The maximum membership value for each data vector
was used to determine the size of the point to be plotted over the map.

Figure 2 shows the map with the data points plotted over it. Colors are
arbitrary, points assigned (through defuzzification) to the same cluster have the
same color. Sizes of the plotted points are relative to the maximum membership
value for the point: smaller points have smaller maximum membership for all
clusters. It must be pointed that the coordinates for the stations were not used
in the clustering process itself, but only for the map generation.
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Fig. 2. Visualization using the Fuzzy C-Means results

Fig. 3. Details of Figure 2

The map shown in Figure 2 and its details (Figure 3) presents clusters that
are mostly contiguous in space, confirming our expectatives that weather phe-
nomena (in this case, precipitation) have a moderate spatial correlation. Outliers
(points that were assigned to clusters different from points nearby) are also easily
identified due to the use of different colors, and the point size can also be used
to identify data vectors that were strongly or weakly assigned to their clusters
(e.g. central large point in the middle figure, small sub-clusters on the right).

5 Self-Organizing Maps

Another way to reduce the 84-dimension time vector to some few variables that
can be plotted in a map is using the Self-Organizing Map [17] or SOM. This
well-known neural network-based algorithm is able to reduce the dimension of a
data set while preserving its topology: in other words, data vectors which were
close in the original feature space will appear close in the new topology. The
SOM uses as input the data and some parameters, the most important being
the number of neurons that will be organized in a regular grid, and gives as
output the best matching neuron for a particular data vector.
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The topology-preserving feature of the SOM is particularly interesting for us:
if we use an adequate representation for the neurons we can plot points that
will appear similar if the clusters are similar. One natural choice for graphical
representation of the neurons is to use a hue-based color system and map the
hue and saturation values to the neurons in such a way that neurons that are
topologically close have visually similar colors associated with them. Some of
those mappings for a 2-dimensional, squared-lattice SOM are shown in Figure 4
(from the left to the right: mappings on a 3× 3, 9× 9 and 15× 15 SOM).

Fig. 4. Mapping of colors to neurons in SOMs with different sizes

Some authors (e.g. [18]) suggest that the number of neurons in a SOM should
be a function of the number of input vectors. For our purposes we tried to vi-
sualize the data points with colors chosen from the color tables similar to those
shown in Figure 4 and several numbers of neurons. The best results for visual-
ization were achieved with SOMs of 9× 9 and 15× 15 neurons, but surprisingly,
even SOMs of size 3× 3 yielded easily interpretable results: data corresponding
to weather stations with behavior different from the geographic neighbors were
plotted in different colors. The map created with the processing of the data with
a 15× 15 SOM is shown in Figure 5, with some details shown in Figure 6.

Fig. 5. Visualization using the SOM results
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Fig. 6. Details of Figure 5

Figures 5 and 6 shows the general visual clustering structure for the data
(data from weather stations geographically close have similar colors) and also
some outliers (e.g. left part of Figure 6). One advantage of using a topology-
preserving algorithm is that we can perceptually evaluate how much a data
point is different from the others.

6 Conclusions and Future Work

In this paper we evaluated two techniques for dimension reduction or mapping
in order to create visual representation of time series over geographic coordi-
nates. Ultimately these techniques may be incorporated on the data collection
systems at INPE’s CPTEC to help identify potentially problematic data sub-
sets. We must point that we did not cluster time series for classification or
characterization, which, depending on the metric used, can be considered mean-
ingless [19,20]. In this research we used the metrics extracted from different
clustering algorithms to visualize spatio-temporal data.

Of the two techniques the one based on the SOM was considered to be more
easily interpretable since it is possible to identify data points that are different
from a cluster and at the same time perceptually evaluate how much it is differ-
ent. Both techniques has been used by researchers in several domains, but due to
its features SOM-based techniques are more prevalent, particularly for analysis
of data with spatial components (e.g. [21]).
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