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Abstract—Telemetry data is the only source for 
identifying/predicting anomalies in artificial satellites. Human 
specialists analyze these data in real time, but its large volume, 
makes this analysis extremely difficult. In this experience 
paper we study the hypothesis of using clustering algorithms to 
help operators and analysts to perform telemetry analysis. Two 
real cases of satellite anomalies in Brazilian space missions are 
considered, allowing assessing and comparing the effectiveness 
of two clustering algorithms (K-means and Expectation 
Maximization), which showed to be effective in the case study 
where several telemetry channels tended to deliver outlier 
values and, in these cases, could support the satellite operators 
by allowing the anticipation of anomalies. However for silent 
problems, where there was just a small variation in a single 
telemetry, the algorithms were not as efficient. 

Keywords - space systems; anomaly detection; clustering.  

I.  INTRODUCTION 
Artificial satellites normally render important services in 

communication, remote sensing, scientific experiments, etc. 
Satellite damage implies not only a financial loss, but also 
loss of essential, and sometimes strategic, services. In this 
scenario, the early detection, diagnosis, and prevention of 
anomalies and faults promotes reliability and availability of 
space systems, extending their lifetime and enduring 
continuity of service. 

A satellite may be logically seen as a set of integrated 
subsystems (orbit and attitude control, thermal, power 
supply, structure, payload, on-board computer, etc.). Aimed 
at monitoring the satellite, each subsystem has a set of 
sensors (thermistors, switches, battery depletion, etc.) for 
measuring the satellite state and conditions. These 
measurements are transmitted to the ground stations on every 
satellite passage and are commonly called housekeeping 
telemetry data. 

The telemetry data is analyzed and monitored by human 
operators and analysts, mainly to assess if the values are not 
out of a pre-defined range or pattern. Values out of limits 
normally indicate a potential anomaly in a given satellite 
subsystem, but the large amount of telemetry data makes it 
almost impossible to perform a careful and detailed analysis 
in real time. 

This practical experience paper studies the hypothesis of 
using data mining techniques to help operators and analysts 
to perform telemetry analysis. In practice, the goal is to 
assess the possibility of detecting satellite anomalies through 
the analysis of telemetry data using clustering algorithms. 

Anomaly detection refers to the problem of finding 

patterns in data that do not conform to the expected behavior 
[1]. There are many different techniques that can be used to 
find a non-conforming pattern in data, such as classification-
based techniques, statistical based techniques, clustering, 
among others. Clustering-based techniques are quite 
adequate for satellite anomaly detection as they can operate 
in a semi-supervised or unsupervised way. These techniques 
also have an efficient test phase based on comparing a test 
instance with a small number of clusters defined in the 
previous training phase [1]. This efficiency is an essential 
characteristic for real-time monitoring. 

Clustering [2][3] is used to group similar data instances 
into clusters. Even though clustering and anomaly detection 
appear to be different from each other, several clustering-
based anomaly detection techniques have been developed. 
These techniques can be divided into three groups, which are 
related to the way they classify anomalies: 1) normal data 
instances belong to a cluster, while anomalies do not belong 
to any cluster; 2) normal data instances belong to large and 
dense clusters, while anomalies belong to small or sparse 
clusters; and 3) normal data instances are closer to their 
closest cluster centroid, while anomalies are far from their 
closest cluster centroid [1]. 

The key reason behind using clustering algorithms for 
detecting anomalies in satellites is that the telemetry data 
from normal satellite operation periods form clusters of 
characteristics and any telemetry instances that do not belong 
to these clusters are a potential indication of anomaly 
(normally, this is the type of analysis that human operators 
and analysts do manually). This way, it seems possible to 
train a cluster algorithm with data from periods of normal 
operation and then evaluate new telemetry data by assigning 
an index that indicates how much of the new instances 
belong (or not) to the learned normal clusters. This index is 
normally a measure of similarity, dissimilarity or deviation. 

In this paper we present the results of the application of 
clustering techniques in the context of two real cases of 
satellite anomalies in Brazilian space missions. In practice, 
the experimental study evaluates and compares the 
effectiveness of two algorithms (K-means and Expectation 
Maximization) in detecting real anomalies in telemetry data. 
Although there are many alternative algorithms, we selected 
K-means [4][5] because it is stable and quite well known, 
and Expectation Maximization [6] as it uses statistical 
mixture models and is less sensitive to the lack of data 
standardization. 

The outline of the paper is as follows. Section 2 presents 
an overview of related work. Section 3 introduces the case 
studies and Section 4 presents the experimental evaluation. 
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Section 5 summarizes the lessons learned. Finally, Section 6 
concludes the paper and proposes lines for future work. 

II. BACKGROUND AND RELATED WORK 
Anomaly detection refers to finding patterns in data that 

are not in accordance with a well-defined notion of normal 
behavior [1]. The automatic anomaly detection research area 
presents a number of challenges, including the availability of 
historical data, the definition of what are normal and 
abnormal patterns, and even the consideration that in many 
fields the concept of normality can evolve. Along these lines, 
we can say that one of the main issues associated with 
automatic anomaly detection task is the characterization of 
the problem to be addressed, including identifying the 
application domain characteristics, the available data and the 
appropriate techniques. 

To identify and apply the most appropriated techniques 
for automatic detection of anomalies, the problem domain 
should be characterized in regard to some key aspects [1]: (i) 
data type: data can be uni or multivariate according to the 
number of attributes, and the attributes may be binary, 
categorical, discrete or continuous; (ii) anomaly type: it 
could be a point anomaly when a variation in a value 
indicates a problem; a context anomaly when a value is 
normal in a context but abnormal in another; or a collective 
anomaly when the anomaly indication is the occurrence of 
some values in an abnormal sequence and not the values 
themselves; (iii) training data: according to the available 
label of the input dataset (i.e., supervised, semi-supervised or 
unsupervised); (iv) expected results: this aspect defines what 
kind of result would be interesting or feasible in a given 
domain. The results can be classificatory (instances 
anomalous or normal) or an index (the probability of an 
instance being anomalous or not). 

In [7] is proposed a method that summarizes telemetry 
data automatically by preserving the important information 
while discarding the rest. It considers as important 
information two kinds of events:  immediate events where 
values are different from their neighbors and permanent 
events where there are permanent changes or trends in the 
telemetry behavior. In the method applied, first, each time-
series in the telemetry data is divided into a set of 
subsequences with a fixed length. Then all the subsequences 
are grouped into clusters based on the DTW (Dynamic Time 
Warping) distance measure. Finally, each cluster is assigned 
a unique symbol, and the subsequences contained in “small” 
clusters are detected as event patterns. 

In [8] the authors used the Kernel PCA statistical 
technique to expand conventional limit checking to adaptive 
limit checking by considering the relationship of telemetry 
data series. The proposed method creates new limits for the 
new-composed attributes, it may be interesting in two ways: 
for the reduction itself, and for the attributes combination 
that can reveal some abnormal interaction between attributes. 

In [9] the same authors have compared the Kernel PCA 
techniques with data mining regression algorithms. Both 
have been employed to adapt telemetry measurement ranges 
in an automatic way. 

NASA projects use ORCA [10] and IMS (Inductive 

Monitoring System) [11]. ORCA is a data mining tool that 
searches for unusual data points, or outliers, in multivariate 
data sets by calculating the distance of each data point from 
neighboring points, while the IMS tool uses clustering 
techniques to generate a knowledge base about the normal 
operation for health monitoring [11]. In particular, the IMS is 
a tool that applies clustering to extract models of normal 
system operation from archived data. It then characterizes 
how the parameters relate to one another during normal 
operation by finding areas in the vector space where nominal 
data tends to fall. These areas are called nominal operating 
regions and correspond to clusters of similar points found by 
the IMS clustering algorithm. The nominal operating regions 
are stored in a knowledge base used by IMS for real-time 
telemetry monitoring or archived for posterior data analysis 
[11]. 

In this work we follow an approach similar to the IMS 
tool, as we apply clustering techniques to detect anomalies in 
two different real-world problems. In practice, we evaluate 
and compare two clustering algorithms for anomaly 
detection in telemetry data: K-means and Expectation 
Maximization (EM). 

K-means is a stable and well-known algorithm that aims 
at partitioning the data into k-clusters so that the within-
group sum of squared errors is minimized. The simplest form 
of the algorithm is based on alternating two procedures. The 
first is to assign an object to the group whose mean is the 
closest in terms of the similarity measure. The second is the 
calculation of new group means based on the assignments. 
The process terminates when no movement of an object to 
another group reduces the within-group sum of squares 
[4][5]. The algorithm is efficient but sensitive to the first 
assignments. 

The EM is a statistical clustering algorithm used to 
approximate a probability function. Its foundation is a 
statistical model called finite mixture, where a mixture is a 
set of k probability distributions, representing k clusters. EM 
assigns a probability distribution to each instance, which 
indicates the probability of it belonging to each of the 
clusters [5][6].  This algorithm also uses a heuristic approach 
and may be affected by the correlation between attributes. 

Both algorithms make Gaussian assumptions about the 
underlying distribution of the data. However, they use a 
different index to determine if an instance belongs or not to a 
cluster. While K-means uses dissimilarity measures 
(Euclidean, Manhattan, etc.), the EM checks the probability 
of a given instance belonging to a Gaussian distribution. The 
algorithms are implemented via Weka API [12]. 

III. CASE STUDIES: TWO REAL SATELLITE FAILURES 
Thanks to satellite specialists, two distinct problems, in 

two different satellites (named here as S1 and S2), were 
identified for our study. Although not related, both problems 
concern the power supply subsystem which, according to 
statistics presented in different papers addressing failures in 
satellites [13][14], this is one of the most critical subsystems 
in a satellite. In both studies, the power subsystem was 
responsible for a considerable percentage of failures 
occurrences: 27% [13] and 22% [14]. 
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A. Power Supply Subsystem 
The power subsystem is responsible for generating and 

conditioning the satellite primary energy (solar panels), for 
storing energy on secondary sources (batteries), and for 
supplying energy to other subsystems at different voltages. 

The power supply subsystem consists of two energy 
sources: a primary source that converts the light striking on 
the solar panel (SAG) during sunlight periods into electrical 
energy, and a secondary source (batteries) that can store 
energy through chemical processes. The control of the 
battery charge status is made by the End of Charge (EOC) 
circuit, which limits the maximum battery charge turning the 
charging current on and off. The conditioning of the main 
bus is done by SHUNT and Battery Discharge Regulator 
(BDR), which both control the energy supplied by the SAG 
and by the battery, providing the satellite and the DC/DC 
converters with a stable main bus. 

During the eclipse phase, the batteries discharge as in 
these periods they are the only source of energy for the 
satellite. In periods of sunlight, the batteries are charged up 
to the charge limit indicated by the end-of-charge (EOC) 
curve. This process takes a certain time t0, which is often 
less than the total period of satellite illumination (t0 + t1). 
Fig. 1 (a) illustrates this. 

The charging circuit checks the temperature and charges 
the battery to the limit specified by the charging curve (curve 
EOC). The value of this charge limit is calculated according 
to the curve chosen and is a function of the observed 
temperature. Verification pulses are launched to obtain the 
level of battery charge and charging current is applied as a 
function of the observed temperature. These pulses are short 
and have a small current. The application of this small 
charge current is required to measure the present level of 
battery discharge (Deep-of-discharge). When the circuit 
detects that the battery is not fully charged, the charge is 
made, always checking the maximum battery charge (EOC), 
i.e., a current (pulse) is applied to the battery until it reaches 
the maximum charge value indicated by the EOC curve 
(always observing the battery temperature). Once charged, 
during the entire sunlight period, the verification pulses 
continue to be applied to the battery at regular intervals to 
verify whether it is still completely charged. Whenever it is 
partially discharged, the charging process is repeated to 
ensure that the battery enters the eclipse period at full 
capacity. Fig. 1 (b) presents this process, showing the pulses 
as green lines. 

B. Power Subsystem Telemetry Channels 

 
Figure 1.  Battery Charge – Normal State. 

Telemetry indicates satellite status and health. In the case 
of the satellites studied in this work, there are more than 
2000 different types of telemetry channels to be analyzed by 
ground operations. These represent values measured by 
sensors and equipment, so they are classified as: Analog: are 
related to analog values such as temperatures, currents, etc. 
Binary: indicates equipment states, such as on or off, main 
or redundant, etc. 

In this work we used only the analog telemetry channels 
that indicate the measurements of interest, namely the 
telemetry channels related to the battery, solar panel, Shunt 
and BDR equipment, since they are the most important for 
detecting anomalies in the power subsystem. Table I 
introduces the list of telemetry channels that were analyzed. 

C. Case Study 1 - Satellite S1 
During the entire operation of the S1 satellite, a silent 

problem was detected on the solar panel (SG1-B). During 
some periods, the SG1-B solar panel telemetry channel 
(TM023) presented values lower than the expected ones for 
sunlight time, showing a weakness in the power supply of 
battery 2. Fig. 3 shows the behavior of TM023 during the 
entire life of the satellite S1. In the figure the y-axis 
represents the months since the satellite launch (October, 
1999), while the x-axis represents the values taken by 
telemetry. The frequency of these values can be observed 
through colors, darker colors represent a higher occurrence 
of a given value in time. 

As seen in Table I, the normal range values for telemetry 
channel TM023 is between 0 and 7.2A. The telemetry 
channel values are normally close to zero during the eclipse 
period, when the solar panel does not receive any energy, 
and near 6A in the sunlight period. By analyzing the 
behavior of this telemetry channel throughout the satellite 
lifetime (Fig. 2), we observe the following: (i) in the region 
of high values there is a seasonal effect that occurs due to the 
normal solar panel degradation; (ii) there are intermediate 
values between the measurements expected during eclipse 
and sunlight periods; (iii) over time, the number of 
measurements  in the  intermediate  region  increases; (iv)  in 
the periods of January to March each year, the phenomenon 
of intermediate measurements did not occur. 

TABLE I.  POWER SUBSYSTEM TELEMETRY CHANNEL 

Telemetry Description Normal Values
TM001 Main Bus voltage 27 to 29V 

TM002 
Main Bus current. This indicates if the 
current is being supplied by the BDR 
(batteries) or by Shunt (main solar panel) 

0 to 36A 

TM003 Mean Error Amplifier output (MEAS) 8 to 23.5V 
TM013/017 BDR input current (battery discharge current) 0 to 13A 
TM014/018 Battery voltage 43.2 to 56.5V 
TM015/019 Battery temperature 0 to 10°C 
TM016/020 3 Cell minimum voltage 3.6 to 4.65V 

TM021 BDR output current (same as MEAS at 
eclipse time) 0 to 36A 

TM022/023 Solar panel current (SG1 and SG2) 0 to 7.2A 
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Figure 2.  TM023 Behavior. 

By analyzing the telemetry channel values, experts 
concluded that the most probable cause of the reduced value 
of TM023 was a real reduction of the SAG current due to an 
intermittent contact problem caused by fatigue crack in the 
welded junction of 4 string return lines (due to thermal stress 
and improper use of the stress relief technique). The failed 
welded junction is part of the wing power harness and can 
also be stressed during manipulation of the harness before 
flight. 

D. Case Study 2 – Satellite S2 
In this case, a failure was identified in two different 

operation periods of satellite S2. From the power subsystem 
point of view, this is not a primary error, since it first 
appeared in the Attitude and Orbit Control subsystem. In 
practice, a problem in this subsystem led the satellite to an 
emergency state. In this state, the priority is to keep the 
satellite's power guaranteed. To ensure that, the solar panel is 
better pointed towards the sun, and, to save energy, all 
equipment is turned off. 

As mentioned before, the satellite's batteries are charged 
during the sunlight periods to be utilized during eclipse 
periods. Charging a battery takes place through the BDR and 
the EOC circuit. This circuit applies a current pulse to check 
the battery deep-of-discharge (DOD). If necessary, the 
battery is charged. However, in the emergency state the 
batteries charge faster than normal, since the solar panel is 
well pointed and all the equipment is turned off. Due to the 

 

Figure 3.  Battery Charge – Emergency State. 

combination of two factors – the application of pulses in the 
battery for longer than expected and a problem in the pulses 
duration – the battery received more charge than normal, 
which started being transformed in heat. This heat was not 
completely dissipated through the thermal subsystem and the 
battery warmed a little more every pass (Fig. 3). 

As shown, in every charging process, the EOC circuit 
indicates the level of battery charge, which is calculated 
through the EOC curve and is a temperature function. During 
some satellite revolutions, the temperature rose but the 
charge was being corrected. As the time went by, the 
temperature reached a maximum value for which the curve 
fails to compensate the voltage to be applied to the battery. 
At this point, the problem got worse and the satellite could 
have been lost. 

This problem, classified by the satellite analysts as being 
catastrophic, happened during a few satellite passages. This 
failure could be seen through many different telemetry 
channels, especially those connected to battery 2. In reality, 
from a certain point in time, the affected telemetry channels 
became out of range and started being monitored by 
operators. 

IV. EXPERIMENTAL STUDY 
This section discusses the results of the experimental 

study, showing the application of the anomaly detection 
algorithms to real stored telemetry data, for normal and 
anomalous operation periods. This experimental campaign 
included two steps, as explained further. 

In the first step, the algorithms were trained and tested 
with data from normal operation periods. We conducted 
three different experiments: (i) trained and tested the 
algorithms with normal data from the early periods of 
satellite life; (ii) trained and tested the algorithms with 
normal data from some years later; (iii) trained the 
algorithms with normal data from the early periods of the 
satellite life and tested the algorithm with normal data from 
some years later (in order to assess the aging effect in the 
power subsystem equipment). 

The data used in the K-means algorithm training and 
testing phase were standardized relative to their mean and 
standard deviation. For this algorithm, the dissimilarity 
indexes were calculated using both Euclidean and Manhattan 
distances and the results showed that clustering and detection 
capacity were similar (only Euclidean Distance results are 
presented). 

 The clustering algorithms behaved as expected for case 
studies 1 and 2 in normal operation periods. For both studies 
the clustering algorithms indexes were in a normal range, 
i.e., the result indexes are low indicating that test data are 
close to the trained clusters. Fig. 4 shows the results for case 
study 2 (similar results were observed for case study 1). 
     Another observation regarding the values of the clustering 
index is that, when trained with data from the satellite early 
life and checked with data from later periods, the algorithms 
pointed correct data as anomalies, i.e. raised false positives 
(Fig. 5). In this case, the indexes are greater than they were 
in the previous test (Fig. 4) and exceeded the threshold. This 
is especially true in Case Study 2, where the characteristic of 
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Figure 4.  Case Study 2 – Training (2004)/Test(2004). 

the battery changed considerably over the years. 
Since there are normal changes in the values of telemetry 

due to the satellite aging or due to on-earth operations, in 
order to incorporate this evolutionary aspect of the data, the 
index threshold used was calculated as been the average of 
dissimilarity indexes with two standard deviation variation. 
The use of this threshold proved to be satisfactory for both 
normal and anomalous phase. In the normal phase, it 
presents just spurious false positives (they are in the range of 
at most 5% and did not show constancy as it normally shows 
in anomaly periods). 

 
Figure 5.  Case Study 2 – Training (2004)/Test(2007). 

In the second step of the experimental evaluation, the 
algorithms were trained with data from normal operation 
periods and tested with data from anomalous periods. This 
step was aimed at evaluating the anomaly detection 
capability of the clustering algorithms. 

In case study 1, the behavior of both algorithms was very 
similar. In fact, the algorithms did not point the low value 
regions for TM023 as observed by the specialists, but 
showed the real unexpected unbalance values in telemetry 
channels TM023 and TM022. This showed that both 
algorithms failed in detecting values slightly outside the 
standard in a single telemetry channel and confirmed what 
was observed before in the simulated tests: a single telemetry 
channel with erroneous values between valid cluster regions 

 
Figure 6.  Case Study 1 – Anomaly Detection (2003). 

 
Figure 7.  Case Study 2 – Anomalous Detection (2007). 

is not well identified. Fig. 6 shows the results for both 
algorithms in Case Study 1. 

In Fig. 7 (related to case study 2), we can see that both 
EM and K-means algorithms have detected the anomalous 
values. It can be observed that the indexes that measure the 
instances’ distance to the cluster tend to grow in these 
anomalous periods, allowing the detection of the anomalies. 

Fig. 8 compares the telemetry channel values with the K-
means algorithm index showing the algorithm anomaly 
detection capability. The index grows in the regions where 
there was unbalance values between TM022 and TM023 that 
indicates a problem since these telemetry channels may have 
similar values. However, as shown in the figure, the 
algorithm does not identify the low unexpected values for 
TM023. 

Fig. 9 shows a comparison between the main telemetry 
channel values and the index pointed by the algorithms. For 
the EM algorithm, the index started growing at least 6 hours 
before the alarm provided by telemetry channel TM015. So, 
the algorithms could anticipate the anomaly. Although short, 
this anticipation could allow taking measures to prevent 
propagation.  

V. LESSONS LEARNED 
The following points summarize the most important lessons 
from the experimental study with the clustering algorithms 
EM and K-means, both in a controlled environment (using 
simulated data) and in a real environment: 
• The use of clustering algorithms for detecting anomalies 

allows operators to monitor just one index 
(measurement of distance or deviation from the known 
cluster) to observe an anomalous trend in data. This can  

 
Figure 8.  Case Study 2 – Anomalous Detection (2007). 
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Figure 9.  Case Study 2 – Anomaly Detection. 

be a contribution to the routine of a satellite operation, 
since currently an operator has to monitor trends in 
many telemetry channels at the same time, which, under 
certain circumstances, can be extremely difficult (if not 
impossible);  

• In Case Study 1, the algorithms were not able to detect 
the anomaly described by the specialists. Although we 
have used only 16 power telemetry channels, the slight 
value variation of a single telemetry channel could not 
be detected, since the weight of a variation in just one 
attribute, combined with the differences of the other 
ones in relation to the cluster centroids, is very low. If 
we had used a greater number of telemetry channels this 
problem would be worse. So, the use of clustering 
techniques for anomaly detection in satellites telemetries 
has to be combined with feature selection techniques, 
for example, to address this kind of problem. The 
feature selection algorithms reduce the feature space by 
selecting or combining the most relevant features in a 
new set of attributes; 

• When using real anomalous data in Case Study 2, where 
telemetries exceeded the expected limits, both 
algorithms were able to detect the anomaly and there 
was a considerable anticipation (in relation to the time 
these telemetry channels would be alarming); 

• Clustering algorithms are sensitive to telemetry channel 
changing behavior resulting from the satellite aging, so a 
continuous learning is required to help correct operation. 
However, continuous learning may lead the algorithms 
to be trained with anomalous behavior, since it may be 
difficult to distinguish, in advance, normal operation 
periods from anomalous operation periods; 

• Both algorithms cluster data using Gaussian models and, 
as observed, worked similarly in both case studies EM 
algorithm seemed to work better when we simulated 
data with alternating trends and inter-group regions, 
although this kind of simulated data were not in the case 
studies. 
 

VI. CONCLUSIONS 
The experimental study showed that the clustering 

algorithms are good to anticipate anomalies if applied in 
situations where several telemetry channels behave 
abnormally and at least one of them tends to go out of limit. 
Two advantages were observed in this approach: the 
anticipation itself and the possibility of observing the 
anomaly through a single index. In this case, both algorithms 
behaved in a similar way. However, we also observed that a 
small abnormal change in a single telemetry channel could 
not be easily perceived by the clustering algorithms. Thus, 
the issue of feature selection has a great importance, as many 
times a serious problem manifests just through small 
variations in one or two telemetry channels. 

Another weakness of using clustering algorithms for 
satellite anomaly detection is that they are sensitive to data 
changes related to satellite aging. This way, permanent 
learning is required, which could lead to the learning of 
anomalies as normal behavior, causing false negative results. 
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