

sid.inpe.br/mtc-m19/2012/11.14.03.00-TDI

METODOLOGIA PARA SELEÇÃO E POSICIONAMENTO ÓTIMO DE COMPONENTES ELETRÔNICOS EM PLACAS DE CIRCUITO IMPRESSO PARA APLICAÇÃO ESPACIAL UTILIZANDO ALGORITMOS EVOLUTIVOS

Antonio Carlos de Oliveira Pereira Júnior

Tese de Doutorado do Curso de Pós-Graduação em Engenharia e Tecnologia Espaciais/Mecânica espacial e Controle, orientada pelos Drs. Fabiano Luis de Sousa, e Valeri Vlassov Vladimirovich, aprovada em 06 de dezembro de 2012.

URL do documento original: <http://urlib.net/8JMKD3MGP7W/3D2LM92>

> INPE São José dos Campos 2012

PUBLICADO POR:

Instituto Nacional de Pesquisas Espaciais - INPE Gabinete do Diretor (GB) Serviço de Informação e Documentação (SID) Caixa Postal 515 - CEP 12.245-970 São José dos Campos - SP - Brasil Tel.:(012) 3208-6923/6921 Fax: (012) 3208-6919 E-mail: pubtc@sid.inpe.br

CONSELHO DE EDITORAÇÃO E PRESERVAÇÃO DA PRODUÇÃO INTELECTUAL DO INPE (RE/DIR-204):

Presidente:

Marciana Leite Ribeiro - Serviço de Informação e Documentação (SID)

Membros:

Dr. Antonio Fernando Bertachini de Almeida Prado - Coordenação Engenharia e Tecnologia Espacial (ETE)

Dr^a Inez Staciarini Batista - Coordenação Ciências Espaciais e Atmosféricas (CEA)

Dr. Gerald Jean Francis Banon - Coordenação Observação da Terra (OBT)

Dr. Germano de Souza Kienbaum - Centro de Tecnologias Especiais (CTE)

Dr. Manoel Alonso Gan - Centro de Previsão de Tempo e Estudos Climáticos (CPT)

Dr^a Maria do Carmo de Andrade Nono - Conselho de Pós-Graduação

Dr. Plínio Carlos Alvalá - Centro de Ciência do Sistema Terrestre (CST)

BIBLIOTECA DIGITAL:

Dr. Gerald Jean Francis Banon - Coordenação de Observação da Terra (OBT) **REVISÃO E NORMALIZAÇÃO DOCUMENTÁRIA:**

Marciana Leite Ribeiro - Serviço de Informação e Documentação (SID) Yolanda Ribeiro da Silva Souza - Serviço de Informação e Documentação (SID) EDITORAÇÃO ELETRÔNICA:

Vivéca Sant'Ana Lemos - Serviço de Informação e Documentação (SID)

sid.inpe.br/mtc-m19/2012/11.14.03.00-TDI

METODOLOGIA PARA SELEÇÃO E POSICIONAMENTO ÓTIMO DE COMPONENTES ELETRÔNICOS EM PLACAS DE CIRCUITO IMPRESSO PARA APLICAÇÃO ESPACIAL UTILIZANDO ALGORITMOS EVOLUTIVOS

Antonio Carlos de Oliveira Pereira Júnior

Tese de Doutorado do Curso de Pós-Graduação em Engenharia e Tecnologia Espaciais/Mecânica espacial e Controle, orientada pelos Drs. Fabiano Luis de Sousa, e Valeri Vlassov Vladimirovich, aprovada em 06 de dezembro de 2012.

URL do documento original: <http://urlib.net/8JMKD3MGP7W/3D2LM92>

> INPE São José dos Campos 2012

Dados Internacionais de Catalogação na Publicação (CIP)

Pereira Jr, Antonio Carlos de Oliveira.

P414m

Metodologia para seleção e posicionamento ótimo de componentes eletrônicos em placas de circuito impresso para aplicação espacial utilizando algoritmos evolutivos / Antonio Carlos de Oliveira Pereira Júnior. – São José dos Campos : INPE, 2012. xxx + 187 p. ; (sid.inpe.br/mtc-m19/2012/11.14.03.00-TDI)

Tese (Doutorado em Engenharia e Tecnologia Espaciais/ Mecânica Espacial e Controle) – Instituto Nacional de Pesquisas Espaciais, São José dos Campos, 2012.

Orientadores : Drs. Fabiano Luis de Sousa, e Valeri Vlassov Vladimirovich .

1. otimização. 2. algoritmos evolutivos. 3. posicionamento de componentes em PCI. 4. M-GEO. I.Título.

CDU 519.863

Copyright © 2012 do MCT/INPE. Nenhuma parte desta publicação pode ser reproduzida, armazenada em um sistema de recuperação, ou transmitida sob qualquer forma ou por qualquer meio, eletrônico, mecânico, fotográfico, reprográfico, de microfilmagem ou outros, sem a permissão escrita do INPE, com exceção de qualquer material fornecido especificamente com o propósito de ser entrado e executado num sistema computacional, para o uso exclusivo do leitor da obra.

Copyright © 2012 by MCT/INPE. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, microfilming, or otherwise, without written permission from INPE, with the exception of any material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use of the reader of the work.

Aprovado (a) pela Banca Examinadora em cumprimento ao requisito exigido para obtenção do Título de **Doutor(a)** em

Engenharia e Tecnologia Espaciais/Mecânica Espacial e Controle

Dr. Adenilson Roberto da Silva

Presidente / INPE / SJCampos - SP

Dr. Fabiano Luis de Sousa

Orientador(a) / INPE / SJCampos - SP

Dr. Valeri Vlassov Vladimirovich

Orientador(a) / INPE / São José dos Campos - SP

Dr. Mário Luiz Selingardi

Dr. Roberto Luiz Galski

Ézio Castejon Garcia

Dr.

Membro da Banca / INPE / SJCampos - SP

Membro da Banca / INPE / São José dos Campos - SP

Convidado(a) / ITA / São José dos Campos - SP

Dr. Alderico Rodrigues de Paula Junior

Convidado(a) / UNIVAP / São José dos Campos - SP

Este trabalho foi aprovado por:

() maioria simples

(火) unanimidade

Aluno (a): Antonio Carlos de Oliveira Pereira Júnior

São José dos Campos, 06 de Dezembro de 2012

"A mente que se abre a uma nova ideia jamais voltará ao seu tamanho original"

Albert Einstein

vi

À Família e a perseverança.

AGRADECIMENTOS

Ao meus orientadores Dr. Fabiano Luis de Sousa e Dr. Valeri Vlassov Vladimirovich que pela extrema competência, experiência, paciência em ensinar e corrigir alguns erros primários que às vezes eu cometia. Suas valiosas sugestões e contribuições muito ajudaram para que esta tese chegasse ao final.

Minha esposa Thatianna e meus filhos Yara e Cadu pela paciência. *O papai terminou a "tarefa de casa", agora podemos brincar…*

х

RESUMO

O setor espacial nos últimos anos tem aumentado a demanda por equipamentos eletrônicos mais confiáveis, com mais funcionalidades, menor tempo de desenvolvimento e menor custo. Porém, dentre os vários fatores que dificultam atender a essa demanda destacam-se a dificuldade de aquisição de componentes eletrônicos usados na montagem desses equipamentos e os severos requisitos impostos aos seus projetos térmicos. Os equipamentos destinados a aplicação espacial estão sujeitos às severas condições ambientais. Em condição de vácuo, seus componentes eletroeletrônicos podem somente ser resfriados pela conducão e radiação que usualmente os levam a operar em ambientes com altas temperaturas, comprometendo dessa forma a sua confiabilidade. A redução de oferta de itens gualificados, o longo prazo de entrega (lead-time), o alto custo de produção, a obsolescência em alguns casos e as restrições governamentais são fatores que dificultam a disponibilidade de aquisição dos componentes eletrônicos usados na montagem de tais equipamentos. Como a confiabilidade de um componente eletrônico é dependente, entre outros, de sua temperatura de operação e de seu nível de qualidade, uma das técnicas empregadas para aumentar a confiabilidade dos equipamentos e assegurar seu correto funcionamento é reduzir as temperaturas de operação de seus componentes. Nesse contexto, o obietivo desta Tese é propor uma metodologia que permita aos projetistas de equipamentos eletrônicos obterem um conjunto de solucões de projeto para uma placa de circuito impresso montada (PCA) para uso espacial. A confiabilidade requerida para a PCA é obtida através da escolha adequada do nível de qualidade de um subconjunto de componentes eletrônicos e de seus posicionamentos ótimos na placa de circuito impresso (PCI). O problema é tratado com uma abordagem multiobjetivo. A otimização no posicionamento dos componentes (placement) inclui a minimização simultânea da taxa de falhas total dos componentes (via relação de Arrhenius), a minimização do comprimento das conexões (wiring) entre os componentes e o custo total dos componentes usados na montagem da PCA. Um algoritmo evolutivo é usado como a ferramenta de otimização que é acoplado a rotinas numéricas desenvolvidas para calcular as temperaturas dos componentes e da PCI.

METHODOLOGY FOR OPTIMAL SELECTION AND PLACEMENT OF ELECTRONIC DEVICES IN PRINTED CIRCUIT BOARDS FOR SPACE APPLICATIONS USING EVOLUTIONARY ALGORITHMS

ABSTRACT

The space industry in recent years has increased the demand for equipment more reliable, with more features, less development time and low cost. However, among many factors that make difficult to meet this demand includes the difficulty of acquiring electronic components used in the assembly of these equipment and the stringent requirements imposed on its thermal projects. Equipments used in space application are subject to severe environmental conditions. Under vacuum conditions, their electronic components can only be cooled by conduction and radiation, which usually lead them to operate in a high temperature environment, thus compromising its reliability. The reduction of the qualified components, the long lead time, the high production costs, obsolescence items and government restrictions are factors that hinder to acquire electronic components used to assembly these equipment. Since the reliability of an electronic device is highly dependent, among others, on its operating temperature and its guality level, a technique to increase the reliability of the equipment and ensure its proper operation is to reduce the operating temperature of its components. In this context, the goal of this Thesis is to propose a methodology that enables the electronic designers to get a set of solutions for printed circuit board assembled (PCA) for space application. The reliability required for the PCA is reached by the appropriated selection of the guality level for a subset of electronic components and their optimal positioning in the printed circuit board (PCB). The problem is treated with a multiobjective approach. The optimization of positioning components (placement) includes minimizing the rate of simultaneous failure of all components (via Arrhenius relation), minimizing the length of the connections (wiring) between the components and the total of the components used in assembling the PCA. A recently proposed evolutionary algorithm is used as the optimization tool, which is coupled to a numerical routine developed to calculate the temperature distribution on the PCB and their components.

LISTA DE FIGURAS

Figura 1.1	_	- Estrutura de apresentação da Tese.	11
Figura 2.1	_	Principais etapas do processo de desenvolvimento de	
		uma PCI	21
Figura 3.1	_	Representação do mapeamento do espaço das variáveis	
		de projeto para o espaço de funções objetivo, para um	
		problema com duas variáveis e três funções objetivo	35
Figura 3.2	_	Relação de dominação entre soluções	36
Figura 3.3	_	Fronteira de Pareto presumida	36
Figura 3.4	_	Ramificação da Inteligência Artificial	39
Figura 3.5	_	Fluxograma básico de um Algoritmo Evolutivo	40
Figura 3.6	_	Operador genético – Recombinação ("crossover")	41
Figura 3.7	_	Operador genético – Mutação	42
Figura 3.8	_	Fluxograma básico para um Algoritmo Genético	43
Figura 3.9	_	Exemplo de Contagem de Nichos.	46
Figura 3.10) —	Exemplo de ordenamento de Pareto	47
Figura 3.11	_	Representação gráfica da técnica "Fitness Sharing"	
		e "Crowding Distance"	51
Figura 4.1	_	Modelo de ecossistema proposto por Bak e Sneppen,	
		1993	54
Figura 4.2	_	Variáveis de projeto codificada em uma seqüência de	
		bits onde cada variável é representada por 6 bits	57
Figura 4.3	_	Fluxograma do Algoritmo GEO.	58
Figura 4.4	_	Fluxograma do Algoritmo M-GEO.	61
Figura 4.5	_	Exemplo de buscas com o M-GEO.	62
Figura 4.6	_	Esquemático para obter a próxima geração no algoritmo	
		NSGA-II.	64
Figura 4.7	_	Esquemático para determinar o bit a ser mutado no	
		algoritmo M-GEO com a implementação do aprimoramento	65
Figura 4.8	_	Fluxograma do Algoritmo M-GEO _{AP1}	68
Figura 4.9	_	Fronteira para FTM1 obtida com o M-GEO canônico	69
Figura 4.10) —	Fronteira para FTM1 obtida com o M-GEO _{AP1} .	69
Figura 4.11	_	Fronteira ampliada para FTM1 obtida como M-GEO	
		canônico.	69
Figura 4.12	2 —	Fronteira ampliada para FTM1 obtida com o M-GEO _{AP1}	69
Figura 4.13	- 1	Fronteira para FTM2 obtida com o M-GEO canônico	70
Figura 4.14		Fronteira para FTM2 obtida com o M-GEO _{AP1}	70
Figura 4.15) —	Fronteira para FIM3 obtida com o M-GEO canônico	71
Figura 4.16	; —	Fronteira para FIM3 obtida com o M-GEO _{AP1}	71
⊢igura 4.17	_	Fronteira para FIM3 obtida com o M-GEO (extremo	_ .
			/1
⊢igura 4.18	; —	Fronteira para FIM3 obtida com o M-GEO _{AP1} (extremo	
		Interior).	/1
⊢igura 4.19) —	Fluxograma do Algoritmo M-GEO _{AP2}	73

	74
Figura 4.21 – Fronteira para FTM1 obtida com o M-GEO _{AP2}	74
Figura 4.22 – Fronteira ampliada para FTM1 obtida com o M-GEO	75
Figura 4.23 – Fronteira ampliada para FTM1 obtida com o M-GEO _{AP2}	75
Figura 4.24 – Fronteira para FTM2 obtida com o M-GEO	76
Figura 4.25 – Fronteira para FTM2 obtida com o M-GEO _{AP2}	76
Figura 4.26 – Fronteira para FTM3 obtida com o M-GEO	76
Figura 4.27 – Fronteira para FTM3 obtida com o M-GEO _{AP2}	76
Figura 4.28 – Comparativo das Fronteiras obtidas para a função FTM3	
(M-GEO, M-GEO _{AP1} e M-GEO _{AP2})	77
Figura 5.1 – Diagrama em Blocos para a metodologia proposta	82
Figura 5.2 – Arquivo de entrada com os parâmetros para o cálculo	
da taxa de falhas dos componentes.	86
Figura 5.3 – Arguivo de entrada com as características mecânicas e	
térmicas da PCI e componentes	87
Figura 5.4 – Codificação para um componente considerado na	
metodologia	88
Figura 5.5 – Possibilidades de rotação do componente considerados	
na metodologia	88
Figura 5.6 – Exemplo de dados armazenados no Arguivo ArgOut 1	94
Figura 5.7 – Exemplo de dados armazenados no Arguivo ArgOut 2	94
Figura 5.8 – Exemplo de dados armazenados no Arquivo ArqOut 3	95
Figura 5.9 – Fluxograma com a descrição para a metodologia	97
Figura 6.1 – PCA LTU PSYS com indicação dos 10 componentes mais	
dissipativos.	100
	103
Figura 6.2 – Mapa de distribuição de temperatura na PCI LTU PSYS,	103
Figura 6.2 – Mapa de distribuição de temperatura na PCI LTU PSYS, método tradicional.	103
Figura 6.2 – Mapa de distribuição de temperatura na PCI LTU PSYS, método tradicional Figura 6.3 – Fronteira de Pareto obtida para a PCA LTU PSYS,	103
 Figura 6.2 – Mapa de distribuição de temperatura na PCI LTU PSYS, método tradicional. Figura 6.3 – Fronteira de Pareto obtida para a PCA LTU PSYS, Instância 1. 	103 106 108
 Figura 6.2 – Mapa de distribuição de temperatura na PCI LTU PSYS, método tradicional. Figura 6.3 – Fronteira de Pareto obtida para a PCA LTU PSYS, Instância 1. Figura 6.4 – Posicionamento para PCA LTU PSYS, M-GEO, Instância 1 	103 106 108
 Figura 6.2 – Mapa de distribuição de temperatura na PCI LTU PSYS, método tradicional. Figura 6.3 – Fronteira de Pareto obtida para a PCA LTU PSYS, Instância 1. Figura 6.4 – Posicionamento para PCA LTU PSYS, M-GEO, Instância 1 (sol. 153.448). 	103 106 108 110
 Figura 6.2 – Mapa de distribuição de temperatura na PCI LTU PSYS, método tradicional. Figura 6.3 – Fronteira de Pareto obtida para a PCA LTU PSYS, Instância 1. Figura 6.4 – Posicionamento para PCA LTU PSYS, M-GEO, Instância 1 (sol. 153.448). Figura 6.5 – Posicionamento para PCA LTU PSYS, método tradicional 	103 106 108 110 110
 Figura 6.2 – Mapa de distribuição de temperatura na PCI LTU PSYS, método tradicional. Figura 6.3 – Fronteira de Pareto obtida para a PCA LTU PSYS, Instância 1. Figura 6.4 – Posicionamento para PCA LTU PSYS, M-GEO, Instância 1 (sol. 153.448). Figura 6.5 – Posicionamento para PCA LTU PSYS, método tradicional Figura 6.6 – Mapa de distribuição de temperatura na PCI LTU PSYS, 	103 106 108 110 110
 Figura 6.2 – Mapa de distribuição de temperatura na PCI LTU PSYS, método tradicional. Figura 6.3 – Fronteira de Pareto obtida para a PCA LTU PSYS, Instância 1. Figura 6.4 – Posicionamento para PCA LTU PSYS, M-GEO, Instância 1 (sol. 153.448). Figura 6.5 – Posicionamento para PCA LTU PSYS, método tradicional Figura 6.6 – Mapa de distribuição de temperatura na PCI LTU PSYS, Instância 1 (sol. 153.448). 	103 106 108 110 110 111
 Figura 6.2 – Mapa de distribuição de temperatura na PCI LTU PSYS, método tradicional. Figura 6.3 – Fronteira de Pareto obtida para a PCA LTU PSYS, Instância 1. Figura 6.4 – Posicionamento para PCA LTU PSYS, M-GEO, Instância 1 (sol. 153.448). Figura 6.5 – Posicionamento para PCA LTU PSYS, método tradicional Figura 6.6 – Mapa de distribuição de temperatura na PCI LTU PSYS, Instância 1 (sol. 153.448). Figura 6.7 – Posicionamento para PCA LTU PSYS, M-GEO, Instância 1 	103 106 108 110 110 111
 Figura 6.2 – Mapa de distribuição de temperatura na PCI LTU PSYS, método tradicional. Figura 6.3 – Fronteira de Pareto obtida para a PCA LTU PSYS, Instância 1. Figura 6.4 – Posicionamento para PCA LTU PSYS, M-GEO, Instância 1 (sol. 153.448). Figura 6.5 – Posicionamento para PCA LTU PSYS, método tradicional Figura 6.6 – Mapa de distribuição de temperatura na PCI LTU PSYS, Instância 1 (sol. 153.448). Figura 6.7 – Posicionamento para PCA LTU PSYS, M-GEO, Instância 1 (sol. 157.067). 	103 106 108 110 110 111 112
 Figura 6.2 – Mapa de distribuição de temperatura na PCI LTU PSYS, método tradicional. Figura 6.3 – Fronteira de Pareto obtida para a PCA LTU PSYS, Instância 1. Figura 6.4 – Posicionamento para PCA LTU PSYS, M-GEO, Instância 1 (sol. 153.448). Figura 6.5 – Posicionamento para PCA LTU PSYS, método tradicional. Figura 6.6 – Mapa de distribuição de temperatura na PCI LTU PSYS, Instância 1 (sol. 153.448). Figura 6.7 – Posicionamento para PCA LTU PSYS, M-GEO, Instância 1 (sol. 157.067). Figura 6.8 – Posicionamento da LTU PSYS, método tradicional. 	103 106 108 110 110 111 112 112
 Figura 6.2 – Mapa de distribuição de temperatura na PCI LTU PSYS, método tradicional. Figura 6.3 – Fronteira de Pareto obtida para a PCA LTU PSYS, Instância 1. Figura 6.4 – Posicionamento para PCA LTU PSYS, M-GEO, Instância 1 (sol. 153.448). Figura 6.5 – Posicionamento para PCA LTU PSYS, método tradicional Figura 6.6 – Mapa de distribuição de temperatura na PCI LTU PSYS, Instância 1 (sol. 153.448). Figura 6.7 – Posicionamento para PCA LTU PSYS, M-GEO, Instância 1 (sol. 153.448). Figura 6.7 – Posicionamento para PCA LTU PSYS, M-GEO, Instância 1 (sol. 157.067). Figura 6.8 – Posicionamento da LTU PSYS, método tradicional. Figura 6.9 – Mapa de distribuição de temperatura da PCI LTU PSYS, 	103 106 108 110 110 111 112 112
 Figura 6.2 – Mapa de distribuição de temperatura na PCI LTU PSYS, método tradicional. Figura 6.3 – Fronteira de Pareto obtida para a PCA LTU PSYS, Instância 1. Figura 6.4 – Posicionamento para PCA LTU PSYS, M-GEO, Instância 1 (sol. 153.448). Figura 6.5 – Posicionamento para PCA LTU PSYS, método tradicional Figura 6.6 – Mapa de distribuição de temperatura na PCI LTU PSYS, Instância 1 (sol. 153.448). Figura 6.7 – Posicionamento para PCA LTU PSYS, M-GEO, Instância 1 (sol. 157.067). Figura 6.8 – Posicionamento da LTU PSYS, método tradicional. Figura 6.9 – Mapa de distribuição de temperatura da PCI LTU PSYS, Instância 1 (sol. 157.067). 	103 106 108 110 110 111 112 112 113
 Figura 6.2 - Mapa de distribuição de temperatura na PCI LTU PSYS, método tradicional. Figura 6.3 - Fronteira de Pareto obtida para a PCA LTU PSYS, Instância 1. Figura 6.4 - Posicionamento para PCA LTU PSYS, M-GEO, Instância 1 (sol. 153.448). Figura 6.5 - Posicionamento para PCA LTU PSYS, método tradicional Figura 6.6 - Mapa de distribuição de temperatura na PCI LTU PSYS, Instância 1 (sol. 153.448). Figura 6.7 - Posicionamento para PCA LTU PSYS, M-GEO, Instância 1 (sol. 157.067). Figura 6.8 - Posicionamento da LTU PSYS, método tradicional. Figura 6.9 - Mapa de distribuição de temperatura da PCI LTU PSYS, Instância 1 (sol. 157.067). Figura 6.10 - Fronteira de Pareto obtida com uso do algoritmo M-GEO 	103 106 108 110 110 111 112 112 113
 Figura 6.2 – Mapa de distribuição de temperatura na PCI LTU PSYS, método tradicional. Figura 6.3 – Fronteira de Pareto obtida para a PCA LTU PSYS, Instância 1. Figura 6.4 – Posicionamento para PCA LTU PSYS, M-GEO, Instância 1 (sol. 153.448). Figura 6.5 – Posicionamento para PCA LTU PSYS, método tradicional Figura 6.6 – Mapa de distribuição de temperatura na PCI LTU PSYS, Instância 1 (sol. 153.448). Figura 6.7 – Posicionamento para PCA LTU PSYS, M-GEO, Instância 1 (sol. 153.448). Figura 6.7 – Posicionamento para PCA LTU PSYS, M-GEO, Instância 1 (sol. 157.067). Figura 6.8 – Posicionamento da LTU PSYS, método tradicional. Figura 6.9 – Mapa de distribuição de temperatura da PCI LTU PSYS, Instância 1 (sol. 157.067). Figura 6.10 – Fronteira de Pareto obtida com uso do algoritmo M-GEO para a PCA LTU PSYS, Instância 2. 	103 106 108 110 110 111 112 112 113 115
 Figura 6.2 – Mapa de distribuição de temperatura na PCI LTU PSYS, método tradicional. Figura 6.3 – Fronteira de Pareto obtida para a PCA LTU PSYS, Instância 1. Figura 6.4 – Posicionamento para PCA LTU PSYS, M-GEO, Instância 1 (sol. 153.448). Figura 6.5 – Posicionamento para PCA LTU PSYS, método tradicional. Figura 6.6 – Mapa de distribuição de temperatura na PCI LTU PSYS, Instância 1 (sol. 153.448). Figura 6.7 – Posicionamento para PCA LTU PSYS, M-GEO, Instância 1 (sol. 157.067). Figura 6.8 – Posicionamento da LTU PSYS, método tradicional. Figura 6.9 – Mapa de distribuição de temperatura da PCI LTU PSYS, Instância 1 (sol. 157.067) Figura 6.10 – Fronteira de Pareto obtida com uso do algoritmo M-GEO para a PCA LTU PSYS, Instância 2. Figura 6.11 – Mapa de distribuição de temperatura na PCI LTU PSYS, 	103 106 108 110 110 111 112 112 113 115
 Figura 6.2 – Mapa de distribuição de temperatura na PCI LTU PSYS, método tradicional. Figura 6.3 – Fronteira de Pareto obtida para a PCA LTU PSYS, Instância 1. Figura 6.4 – Posicionamento para PCA LTU PSYS, M-GEO, Instância 1 (sol. 153.448). Figura 6.5 – Posicionamento para PCA LTU PSYS, método tradicional Figura 6.6 – Mapa de distribuição de temperatura na PCI LTU PSYS, Instância 1 (sol. 153.448). Figura 6.7 – Posicionamento para PCA LTU PSYS, M-GEO, Instância 1 (sol. 153.448). Figura 6.7 – Posicionamento para PCA LTU PSYS, M-GEO, Instância 1 (sol. 157.067). Figura 6.8 – Posicionamento da LTU PSYS, método tradicional. Figura 6.9 – Mapa de distribuição de temperatura da PCI LTU PSYS, Instância 1 (sol. 157.067). Figura 6.10 – Fronteira de Pareto obtida com uso do algoritmo M-GEO para a PCA LTU PSYS, Instância 2. Figura 6.11 – Mapa de distribuição de temperatura na PCI LTU PSYS, Instância 2, (sol. 7.336). 	103 106 108 110 110 111 112 112 113 115 117
 Figura 6.2 – Mapa de distribuição de temperatura na PCI LTU PSYS, método tradicional. Figura 6.3 – Fronteira de Pareto obtida para a PCA LTU PSYS, Instância 1. Figura 6.4 – Posicionamento para PCA LTU PSYS, M-GEO, Instância 1 (sol. 153.448). Figura 6.5 – Posicionamento para PCA LTU PSYS, método tradicional Figura 6.6 – Mapa de distribuição de temperatura na PCI LTU PSYS, Instância 1 (sol. 153.448). Figura 6.7 – Posicionamento para PCA LTU PSYS, M-GEO, Instância 1 (sol. 153.448). Figura 6.7 – Posicionamento para PCA LTU PSYS, M-GEO, Instância 1 (sol. 157.067). Figura 6.8 – Posicionamento da LTU PSYS, método tradicional. Figura 6.9 – Mapa de distribuição de temperatura da PCI LTU PSYS, Instância 1 (sol. 157.067). Figura 6.10 – Fronteira de Pareto obtida com uso do algoritmo M-GEO para a PCA LTU PSYS, Instância 2. Figura 6.11 – Mapa de distribuição de temperatura na PCI LTU PSYS, Instância 2, (sol. 7.336). Figura 6.12 – Posicionamento para PCA LTU PSYS, M-GEO, Instância 1 	103 106 108 110 110 111 112 112 113 115 117
 Figura 6.2 - Mapa de distribuição de temperatura na PCI LTU PSYS, método tradicional. Figura 6.3 - Fronteira de Pareto obtida para a PCA LTU PSYS, Instância 1. Figura 6.4 - Posicionamento para PCA LTU PSYS, M-GEO, Instância 1 (sol. 153.448). Figura 6.5 - Posicionamento para PCA LTU PSYS, método tradicional Figura 6.6 - Mapa de distribuição de temperatura na PCI LTU PSYS, Instância 1 (sol. 153.448). Figura 6.7 - Posicionamento para PCA LTU PSYS, M-GEO, Instância 1 (sol. 157.067). Figura 6.8 - Posicionamento da LTU PSYS, método tradicional. Figura 6.9 - Mapa de distribuição de temperatura da PCI LTU PSYS, Instância 1 (sol. 157.067). Figura 6.10 - Fronteira de Pareto obtida com uso do algoritmo M-GEO para a PCA LTU PSYS, Instância 2. Figura 6.11 - Mapa de distribuição de temperatura na PCI LTU PSYS, Instância 2, (sol. 7.336). Figura 6.12 - Posicionamento para PCA LTU PSYS, M-GEO, Instância 1 (sol. 7.336). 	103 106 108 110 110 111 112 112 113 115 117 118

Figura 6.14 – PCA LTU BAPTA com indicação dos 17 componentes	
mais dissipativos	120
Figura 6.15 – Mapa de distribuição de temperatura na LIU BAPIA,	104
Figura 6 16 – Fronteira de Pareto obtida para a PCA I TU BAPTA	124
Instância 1	126
Figura 6 17 – Posicionamento para PCA I TIL BAPTA M-GEO	120
Instância 1 (sol. 134.126).	127
Figura 6.18 – Posicionamento para PCA LTU BAPTA, método	
tradicional.	127
Figura 6.19 – Mapa de distribuição de temperatura na PCI LTU BAPTA,	
Instância 1 (sol. 134.126)	129
Figura 6.20 – Posicionamento para PCA LTU BAPTA, M-GEO,	
Instância 1 (sol. 145.974).	130
Figura 6.21 – Posicionamento para PCA LIU BAPIA, metodo	100
Figure 6.22 Frentaire de Parete obtide com une de algoritme M.CEO	130
rigura 0.22 - Fionteira de Fareto oblida com uso do algontino M-GEO	133
Figura 6 23 – Mana de distribuição de temperatura na PCI I TU BAPTA	100
Instância 2. (sol. 191.469).	135
Figura 6.24 – Posicionamento para PCA LTU BAPTA, M-GEO,	
Instância 2 (sol. 191.469)	136
Figura 6.25 – Posicionamento para PCA LTU BAPTA, método	
tradicional.	136
Figura 6.26 – PCA LTU BAPTA com indicação das posições para os	
16 componentes considerados na Instância 3	138
Figura 6.27 – Fronteira de Pareto obtida para a LIU BAPIA,	
Figure 6.29 Mana da distribuição da temporatura na DOLLTU DADIA	141
rigura 0.20 – Mapa de distribuição de temperatura na POLLTO DAPTA,	111
Figura 6 29 – Posicionamento da PCA I TILBAPTA M-GEO Instância 3	144
(sol. 109.379)	145
Figura 6.30 – Posicionamento da PCA LTU BAPTA, método tradicional	
(Instância 3).	145
Figura 6.31 – Posicionamento para PCA LTU BAPTA, M-GEO,	
Instância 3 (sol. 148.738)	146
Figura 6.32 – Posicionamento para PCA LTU BAPTA, método tradicional	
(Instância 3).	146
Figura 6.33 – Mapa de distribuição de temperatura na PCI LTU BAPTA,	4 4 7
Figure 6.24 DCA LTU PADTA com indicesão dos posições poro es 16	147
Figura 6.34 – PCA LTU BAPTA com inducação das posições para os 16	
considerados na Instância 2	148
Figura 6.35 – Fronteira de Pareto obtida para a LTU BAPTA com uso de	1 10
componentes "Dummies". Instância 2	152
Figura 6.36 – Posicionamento da PCA LTU BAPTA com Dummies,	
M-GEO (sol 188.004)	154

Figura 6.37 – Posicionamento da PCA LTU BAPTA com Dummies,	
método tradicional	154
Figura 6.38 – Mapa de distribuição de temperatura na PCI LTU BAPTA	
com uso de " <i>dummies</i> ", (sol. 188.004)	154
Figura 6.39 – Posicionamento para PCA LTU BAPTA com Dummies	
M-GEO (sol 324.739)	156
Figura 6.40 – Posicionamento para PCA LTU BAPTA com Dummies,	
método tradicional.	156
Figura 6.41 – Mapa de distribuição de temperatura na PCI LTU BAPTA	
com uso de " <i>dummies</i> ", (sol. 324.739)	156

LISTA DE TABELAS

Tabela	1.1	- Prazos e preços aproximados de componentes	3
Tabela 2	2.1	 Principais manuais para predição de falhas para componentes elétricos e eletroeletrônicos 	16
Tabela 2	2.2	 Fórmulas para cálculo da taxa de falhas, método 	10
Tabela	23	de análise de estresse – Taxa de falhas para diferentes níveis de qualidade	18
Tubbla	2.0	(ALD Reliability tool, www.aldservice.com)	19
Tabela 2	2.4	 Resumo dos trabalhos relacionados ao posicionamento ótimo de componentes em PCI. 	30
Tabela 4	4.1	- Funções teste para minimização multiobjetivo.	66
Tabela 4	4.2	- Resultados obtidos para o aprimoramento 1	77
Tabela 4	4.3	 Resultados obtidos para o aprimoramento 2 	78
Tabela	5.1	 Exemplo de dados para os níveis de qualidade e preço dos componentos 	02
Tabola	6 1	 Instâncias consideradas na avaliação das motodologias 	101
Tabela	0.1 C 0	- Instancias consideradas na avaliação das metodologias	. 101
Tabela	0.2	LTU PSYS.	. 104
Tabela	6.3	 Características térmicas dos componentes da PCA 	104
Tabela	6.4	 Parâmetros para cálculo da taxa de falhas da PCA 	. 104
		LTU PSYS	. 104
Tabela	6.5	- Custos dos componentes e níveis de qualidade dos	
		método tradicional	105
Tabela	6.6	- Temperatura dos componentes da LTU PSYS, método	. 100
		tradicional.	. 105
Tabela	6.7	- Taxa de falhas total calculada para a PCA LTU PSYS,	
		método tradicional.	. 106
Tabela	6.8	- Valores dos extremos da Fronteira de Pareto obtidos para	100
Tabala	c 0	a LIUPSYS com uso do algoritmo M-GEU, Instancia 1	. 108
Tabela	0.9	- Temperatura dos componentes para a PCA LTO PSYS considerados na Instância 1 (sol. 153.448)	110
Tabela	6.10	- Temperatura dos componentes para a PCA LTU PSYS	
		considerados na Instância 1 (sol. 157.067).	. 112
Tabela	6.11	 Preço e níveis de qualidade dos componentes considerados pa avalição da materialação para a RCA LTU RSVS 	;
		na availação da melodologia para a FOA LIU FOIS, considerando a Instância 2	11/
Tabola	6 1 2	- Algumas das soluções viávois obtidas polo algoritmo	4
Iaveid	0.12	- Aiguinas das soluções viaveis oblidas pelo algonilino M-GEO para a POA I TH PSVS Instância 2	116
Tabela	6 12	- Custo e nível de qualidade para os componentes da	. 110
I aveid	0.13	PCA LTU PSYS considerados na Instância 2 (sol. 7.336)	. 116

Tabela 6.14 –	Temperatura e taxa de falhas para os componentes da	117
Tabela 6.15 –	Taxa de falhas total calculada para a PCA LTU PSYS,	
	Instância 2 (sol. 7.336).	118
Tabela 6.16 -	· Garacterísticas dimensional e termica da PCI da	121
Tabela 6.17 -	Características térmicas dos componentes da	121
	LTU BAPTA	121
Tabela 6.18 –	Parâmetros para cálculo das taxas de falhas para a LTU BAPTA.	122
Tabela 6.19 –	Custos dos componentes e níveis de qualidade dos	
	componentes usados na montagem da LIU BAPIA, método tradicional	100
Tabela 6.20 –	Temperatura dos componentes da LTU BAPTA.	122
	método tradicional.	123
Tabela 6.21 -	Taxa de falhas total calculada para a LTU BAPTA,	
	método tradicional	125
1 abela 6.22 -	Valores dos extremos da Fronteira de Pareto obtidos	
	Instância 1	126
Tabela 6.23 -	Temperatura dos componentes para a LTU BAPTA,	
	Instância 1 (sol. 134.126)	128
Tabela 6.24 –	Temperatura dos componentes para a PCA LTU BAPTA,	
Tabala C 05	Instância 1 (sol. 145.974).	130
Tabela 6.25 -	Preço e niveis de qualidade dos componentes	122
Tabela 6.26 –	Algumas das soluções viáveis obtidas pelo algoritmo	132
	M-GEO para a LTU BAPTA, Instância 2	133
Tabela 6.27 -	Custo dos componentes e nível de qualidade para os	
	componentes da PCA LTU BAPTA, Instância 2,	
T 0.00	(sol. 191.469) melhor taxa de falhas	134
Tabela 6.28 –	· l'emperatura dos componentes e taxas de falhas para os	105
Tabola 6 20 _	Componentes da LTU BAPTA, Instancia 2, (sol. 191.469)	135
	considerando a Instância 2 (sol. 191 469)	136
Tabela 6.30 -	Características térmicas dos componentes da PCA	100
	LTU BAPTA, Instância 3	. 138
Tabela 6.31 -	Principais parâmetros para o cálculo das taxas de falhas	
	dos componentes usados na Instância 3	139
l abela 6.32 –	• Custos dos componentes e niveis de qualidade usados no	100
Tabela 6 33 -	Tielodo (radicional, instancia 3	139
	componentes para a LTU BAPTA obtidos no método	
	tradicional, Instância 3.	140
Tabela 6.34 -	Algumas das soluções não-dominadas obtidas pelo	-
	M-GEO para a LTU BAPTA, Instância 3	142
Tabela 6.35 –	Custo dos componentes e nível de qualidade para a	
	LIU BAPTA, Instância 3 (sol. 109.379).	142

Tabela 6.36 –	Temperaturas e taxa de falhas obtidas para os componentes da PCA LTU BAPTA. Instância 3	
	(sol. 109.379)	143
Tabela 6.37 –	Taxa de falhas total calculada para a LTU BAPTA, Instância 3 (sol. 109.379)	144
Tabela 6.38 –	Custo dos componentes e nível de qualidade para a	
Tabela 6.39 –	Taxa de falhas total calculada para a PCA LTU BAPTA,	146
Tab. 1. 0.40	Instância 3 (sol. 148.738).	147
1 abela 6.40 -	LTU BAPTA, com uso de componentes "dummies"	149
Tabela 6.41 -	Temperatura e taxas de falhas individuais dos componentes para a LTU BAPTA com uso de componentes " <i>dummies</i> "	
	obtidos no método tradicional	150
Tabela 6.42 –	Algumas das soluções não-dominadas obtidas para a PCA BAPTA com uso de componentes " <i>Dummies</i> "	152
Tabela 6.43 –	Temperaturas e taxa de falhas obtidas para os	153
Tabela 6.44 -	Temperaturas e taxa de falhas obtidas para os	100
	componentes da LTU BAPTA "dummies", sol. 324.739	155

LISTA DE SIGLAS E ABREVIATURAS

CAST	China Academy of Space Technology.
CBERS	China-Brazil Earth Research Satellite.
CI	Circuito Integrado
CNES	Centre National d'Études Spatiales.
COTS	Commercial Off-The-Shelf.
CSGA	Combinatorial Simple Genetic Algorithm.
DSPO	Defense Standardization Program Office
EO	Extremal Optimization.
ESA	European Space Agency.
ETM	Electro-Thermal Resistance Model.
FHTS	Flow and Heat Transfer solver.
FIPMCP	Formulated Initial Placement and Multi-Constraints Parameters.
FIT	Failure in Time.
GEO	Generalized Extremal Optimization
GEO _{real}	Variante do GEO.
GEO _{var}	Variante do GEO.
GLS	Guided Local Search.
GSFC	Goddard Space Flight Center.
INPE	Instituto Nacional de Pesquisas Espaciais.
ITAR	International Traffic in Arms Regulations.
JPL	Jet Propulsion Laboratory.
MCM	Multichip Module Substrate.
ME	Modelo de Engenharia.
M-GEO	Multiobjective Generalized Extremal Optimization.
MOGA	Multi-Objective Optimization Genetic Algorithm.
MQ	Modelo de Qualificação.
MTBF	Mean Time Between Failures.
MUA	Multiattribute Utility Analysis.
MV	Modelo de Vôo.
NPGA	Niched-Pareto Genetic Algorithm.
NSGA	Nondominated Sorting Genetic Algorithm.
NSGA-II	Nondominated Sorting Genetic Algorithm-II.
PAES	Pareto Archived Evolution Strategy.
PCA	Printed Circuit Assembly.
PCI	Printed Circuit Board.
PDR	Preliminary Design Review.
RWGA	Random Weighted Genetic Algorithm
SGA	Simple Genetic Algorithm.
SOC	Self-Organized Criticality
	Cen organized onlicality.

VEGA

Vector Evaluated Genetic Algorithm. Weighted-sum approach for Multi-Objective Genetic Algorithm. WMOGA

LISTA DE SÍMBOLOS

- τ Parâmetro de ajuste do GEO e M-GEO.
- π_A Fator de aplicação para um componente.
- λ_b Taxa de falhas base de um componente.
- $\pi_{\rm C}$ Fator de contato.
- π_{CV} Fator de capacitância.
- λ_{CYC} Taxa de falhas devido a ciclos de escrita/leitura em memórias.
- π_E Fator ambiental para um componente.
- π_F Fator de função para um componente.
- π_L Fator de maturidade para um componente.
- λ_p Taxa de falhas de um componente.
- π_{P} Fator de dissipação de potência para um componente (Watts).
- π_Q Fator de qualidade para um componente.
- $\pi_{\rm R}$ Fator de resistência.
- $\pi_{\rm S}$ Fator de estresse para um componente.
- π_{T} Fator de temperatura para um componente.
- π_{V} Fator de voltagem para um componente.
- Ea Energia de ativação (eV).
- N_p Tamanho da população de um SGA.
- P_c Probabilidade de recombinação.
- P_m Probabilidade de mutação.
- R(t) Confiabilidade em função do tempo.
- T_{dom} Parâmetro do NPGA.
- Tj Temperatura de Junção de um semicondutor.

SUMÁRIO

1	INTRODUÇÃO	1
1.1 1.2 1.3 1.4 1.5	Motivação Objetivo Método Contribuições Organização da Tese	
2	POSICIONAMENTO ÓTIMO DE COMPONENTES ELETRÔNICOS EM PCI	13
2.1 2.2 2.3	Previsão de confiabilidade Projeto de Placas de Circuito Impresso Revisão Bibliográfica de métodos para posicionamento de	14 19 22
3	OTIMIZAÇÃO E ALGORITMOS EVOLUTIVOS MULTIOBJETIVOS	33
3.1	Definição do Problema de Otimização Multiobietivo	34
3.2	Métodos clássicos para Otimização Multiobjetivo	37
3.3	Otimização com Algoritmos Evolutivos	38
3.3.1 3.4	O Algoritmo Genético Simples Computação Evolutiva Aplicada a Problemas de Otimização	40
2/1	Multiobjetivo	43
3.4.1	Multi-Objective Optimization Constic Algorithm – MOGA	43
343	Nondominated Sorting Genetic Algorithm – NSGA	40 46
3.4.4	Niched-Pareto Genetic Algorithm – NPGA	48
3.4.5	Random Weighted Genetic Algorithm – RWGA	49
3.4.6	Strength Pareto Evolutionary Algorithm – SPEA	49
3.4.7	Nondominated Sorting Genetic Algorithm – NSGA-II	50
3.4.8	Pareto Archived Evolution Strategy – PAES	51
3.4.9	Multiobjective Generalized Extremal Optimization – M-GEO	52
4	MULTIOBJECTIVE GENERALIZED EXTREMAL OPTIMIZATION - M-GEO	53
11	SOC e o método da Otimização Extrema	53
4.1	Método da Otimização Extrema Generalizada - GEO	55
4.3	Otimização Extrema Generalizada Multiobietivo – M-GEO	58
4.4	Tentativas de aprimoramento do Algoritmo M-GEO	62
4.4.1	Distância de aglomeração (crowding distance)	63
4.4.2	Verificação do desempenho das propostas para	05
112	Aprimoramento 1	50
4.4.3 4 4 3 1	Aprilloralitetito T Resultados para a função teste FTM1 (ΔΡ1)	סט גא
4.4.3.2	Resultados para a função teste FTM2 (AP1)	00 70

70 72
//
79
80
81
83
85
88
۵۵
۵۵
۵۵
90
 00
93
93 95
93 95 95
93 95 95 95 99
93 95 95 95 95 99 101
93 95 95 95 95 99 101
93 95 95 95 95 101 103 105
93 95 95 95 95 101 103 105
93 95 95 95 95 95 101 103 105 107
93 95 95 95 95 101 103 105 107
93 95 95 95 95 101 103 103 105 107 113
93 95 95 95 95 101 103 103 105 107 113 119
93 95 95 95 95 95 101 103 103 105 107 113 119
93 95 95 95 95 95 101 103 103 105 107 113 119 121
93 95 95 95 95 95 101 103 103 105 107 113 119 121 123
93 95 95 95 95 101 103 103 105 107 113 119 121 123
93 95 95 95 95 95 101 103 103 105 107 113 119 121 123 125
93 95 95 95 95 95 95 101 101 103 103 105 107 113 119 121 123 125
93 95 95 95 95 95 95 101 101 103 103 105 107 113 119 121 123 125 131
93 95 95 95 95 95 101 101 103 103 105 107 113 119 121 123 125 131
93 95 95 95 95 95 101 103 103 103 105 107 113 119 121 123 125 131 137

6.2.5.2	Aplicação da metodologia com uso do M-GEO canônico	140
6.3	Estudo de Caso 3 - Unidade eletronica LIU BAPIA com	
	uso de componentes Dummies – Instância 2	147
6.3.1	Estudo de Caso 3 - Aplicação do Método Tradicional	149
6.3.2	Resultados com uso da metodologia multiobjetivo –	
	Instância 2	151
6.4	Considerações Gerais Sobre os Resultados Obtidos	157
7	CONCLUSÃO E SUGESTÕES	159
REFERÊ	NCIAS BIBLIOGRÁFICAS	165
REFERÊ APENDI	NCIAS BIBLIOGRÁFICAS CE A – PARÂMETROS USADOS PARA O CÁLCULO DA	165
REFERÊ APENDI	NCIAS BIBLIOGRÁFICAS CE A – PARÂMETROS USADOS PARA O CÁLCULO DA CONFIABILIDADE DOS COMPONENTES	165 173
REFERÊ APENDI APENDI	NCIAS BIBLIOGRÁFICAS CE A – PARÂMETROS USADOS PARA O CÁLCULO DA CONFIABILIDADE DOS COMPONENTES CE B – LISTA DE CONEXÕES ENTRE OS COMPONENTES	165 173
REFERÊ APENDI APENDI	ENCIAS BIBLIOGRÁFICAS CE A – PARÂMETROS USADOS PARA O CÁLCULO DA CONFIABILIDADE DOS COMPONENTES CE B – LISTA DE CONEXÕES ENTRE OS COMPONENTES (NETLIST)	165 173 185
REFERÊ APENDI APENDI APENDI	ENCIAS BIBLIOGRÁFICAS CE A – PARÂMETROS USADOS PARA O CÁLCULO DA CONFIABILIDADE DOS COMPONENTES CE B – LISTA DE CONEXÕES ENTRE OS COMPONENTES (NETLIST) CE C – CARACTERÍSTICAS TÉRMICAS DOS	165 173 185

1 INTRODUÇÃO

O setor espacial nos últimos anos tem aumentado a demanda por equipamentos eletrônicos mais confiáveis, com mais funcionalidades, menor tempo de desenvolvimento e principalmente, de menor custo. Porém, dentre os vários fatores que dificultam atender a essa demanda destacam-se a dificuldade de aquisição de componentes eletrônicos usados na montagem destes equipamentos e os severos requisitos impostos aos seus projetos térmicos. Estes equipamentos estão sujeitos às severas condições ambientais pois, em condição de vácuo, seus componentes eletroeletrônicos podem somente ser resfriados por condução e radiação, o que usualmente os levam a operar em ambientes com altas temperaturas, comprometendo dessa forma a sua confiabilidade.

Os principais fatores que dificultam a aquisição dos componentes eletrônicos são a redução de oferta de itens qualificados, o longo prazo de entrega ("*lead-time*"), o alto custo de produção e a obsolescência de itens. Como exemplo, em meados dos anos 80, a fabricação de componentes eletrônicos destinados aos setores de defesa e aeroespacial representavam 7% do mercado mundial. No final dos anos 90, a parcela caiu para 0,3%. Pelo menos uma dezena de grandes fabricantes de componentes eletrônicos, incluindo Motorola e Harris saíram do mercado (CONDRA et al., 1999). A diminuição do número de fabricantes contribui para a redução de oferta de componentes, além de limitar o uso de novas tecnologias. Exemplo disso são os processadores desenvolvidos na década de 70 e que ainda estão em uso no setor espacial.

Em geral, o custo envolvido no desenvolvimento de equipamentos destinados ao setor espacial exige que seja seguida uma filosofia que objetiva a minimização de riscos quanto à confiabilidade e prazos. Tradicionalmente a fabricação do Modelo de Voo (MV) é precedida pela fabricação do Modelo de Qualificação (MQ) e do Modelo de Engenharia (ME). O ME deve ser completo e representativo quanto à funcionalidade e desempenho. O MQ deve ser

1

completo e representativo para demonstrar que o projeto proposto e a sua fabricação atendem com margem suficiente todas as especificações para todas as condições ambientais previstas para a missão. O MV deve ser fabricado utilizando exatamente os mesmos processos, ferramental e seqüência de operação utilizada na fabricação do MQ.

Estes equipamentos são, em sua grande maioria, compostos de componentes eletrônicos montados em placas de circuito impresso (PCI), conhecidas por placa de circuito montada (PCA) e instaladas em caixas mecânicas. O início do processo de aquisição dos componentes qualificados e necessários para a montagem dos equipamentos MQ e MV, em geral, ocorre logo após a Revisão Preliminar do Projeto (PDR) onde as soluções de projeto e os esquemas elétricos dos equipamentos já se encontram definidas. Porém, a relação completa dos componentes é concluída somente após a realização dos testes funcionais do ME. Para algumas classes de componentes, o prazo de entrega oferecido pelos fabricantes pode levar um longo tempo, quantificado em dezenas de semanas. Em muitos casos, a conclusão da fabricação do MQ sofre atrasos pela indisponibilidade dos componentes no momento requerido.

A escolha do nível de qualidade para os componentes é baseada fortemente no requisito de confiabilidade especificada para a missão. Em muitos casos, a escolha dos componentes privilegia aqueles com menores taxas de falhas. Isto resulta em equipamentos com índice de confiabilidade maior que o especificado, porém mais caros e exigindo maior tempo para o seu fornecimento. O prazo de entrega compreende, além do tempo de fabricação do componente, o tempo necessário para a realização das inspeções e testes mecânicos, elétricos e ambientais. Estes testes visam verificar se o componente projetado e fabricado é adequado para assegurar a operação e capacidade de sobrevivência sob determinada condição ambiental. Em geral, quanto maior o requisito de qualidade (menor taxa de falhas), maior o seu custo e prazo de entrega. Esses prazos variam, em média, de 10 a 16 semanas para componentes passivos (resistores, capacitores e indutores, que

2

não são sensíveis à radiação), 46 semanas para circuitos integrados, a 60 semanas para diodos, transistores e dispositivos de alta frequencia.

A Tabela 1.1 apresenta um comparativo dos prazos e preços estimados para a aquisição de dois componentes de diferentes níveis de qualidade.

Тіро	Qualidade	Preço (US\$)	Prazo de Entrega (semanas)
	Comercial	2,27	Estoque
Diodo	JANJ	10,95	16
1NI5806	JANTX	14,54	22
1100000	JANTXV	16,43	36
	JANS	76,86	52
	Comercial	0,75	Estoque
Transistor	JANJ	2,14	16
20122222	JANTX	4,92	22
ZNZZZA	JANTXV	8,59	24
	JANS	36,89	36

Tabela 1.1 – Prazos e preços aproximados de componentes

Dados obtidos com distribuidor de componentes eletrônicos

De acordo com o documento NASA-EE-INST-002 (NASA, 2002), os componentes semicondutores discretos são classificados com JANS, JANTXV, JANTX, JANJ e comercial. Apenas o primeiro é usado em aplicações espaciais sem a necessidade de testes adicionais. Os demais níveis de qualidade podem ser utilizados mas é necessário avaliar os requisitos de missão (níveis de radiação, tempo de missão, confiabilidade, etc.) para definir se é necessário aplicar testes adicionais aos componentes.

Outro fator que contribui para a dificuldade de aquisição são as restrições governamentais, em especial, do governo norte-americano através da regulamentação do "*International Traffic in Arms Regulations - ITAR*" (UDS, 2011). Esses regulamentos controlam a exportação, reexportação e importação de itens e serviços usados na área de defesa. Essas restrições têm sido expandidas e já abrangem, além do setor de defesa, todos os tipos de bens tecnológicos, inclusive o setor de componentes eletrônicos. Não existe uma lista definitiva de itens sujeita ao ITAR e um item pode ser incluído ou retirado a qualquer momento, sem aviso prévio. A regulamentação imposta pelo ITAR

tem aumentado o risco, tanto programático quanto tecnológico no desenvolvimento de produtos destinados ao setor espacial e, em geral, as restrições estão relacionadas com questões geopolíticas e comerciais.

Como exemplo do impacto que estas restrições podem trazer, pode-se citar o caso do satélite CBERS-3, desenvolvido pelo Instituto Nacional de Pesquisas Espacias (INPE) em parceria com a Academia Chinesa de Tecnologia Espacial (CAST). Vários equipamentos contratados pelo INPE foram baseados em componentes eletrônicos que não estavam sujeitos às restrições do ITAR no momento em que as soluções de projeto foram adotadas, porém ao longo do processo de aquisição, esses componentes passaram a fazer parte da regulamentação do ITAR, obrigando a re-projetos e conseqüente aumento de custos e atrasos na fabricação dos equipamentos.

Face a isto, a Agência Espacial Europeia (ESA) e a CAST preocupadas com essas restrições decidiram reduzir suas dependências aos componentes norteamericanos com o desenvolvimento de satélites denominados "ITAR-free"¹, mesmo em detrimento ao custo de desenvolvimento, confiabilidade e limitações no uso de novas tecnologias. Os primeiros satélites de comunicação "ITAR-free" desenvolvidos pela empresa Thales Alenia Space e lançados a partir de 2005 ficaram em torno de 6% mais caros quando comparados aos satélites "convencionais" (FAA, 2010).

Por não haver uma clareza quanto aos itens sujeitos ao ITAR e os riscos e custos associados ao desenvolvimento de equipamentos "ITAR-free", a opção de "armazenamento estratégico", i.e., adquirir e manter estocados componentes qualificados para uso em futuras missões nem sempre é viável se considerarmos o longo ciclo de desenvolvimento para equipamentos destinados ao uso espacial, pois de acordo com o documento NASA-EE-INST-002 (NASA, 2002), componentes fabricados a mais de cinco anos devem ser submetidos a re-testes (*"relife tests"*) que, dependendo dos resultados, podem

¹ O termo "ITAR-free" foi introduzido pela empresa Thales Alenia Space e é frequentemente usado para descrever todos os satélites fabricados sem uso de componentes americanos.
prolongar seu uso por mais três anos. Os re-testes visam verificar se o lote dos componentes não foi degradado durante o armazenamento devido a corrosão nos pinos que podem dificultar a sua soldagem, corrosão nas interconexões internas causando fraqueza mecânica, etc. Nesse caso, o componente pode ser utilizado por até oito anos após sua fabricação porém, exige um acompanhamento do estoque e capacidade de realização dos re-testes (laboratórios e pessoal especializado).

Para minimizar o impacto da redução de oferta de itens qualificados, nos últimos anos têm crescido o número de trabalhos propondo soluções para o uso de componentes comerciais de prateleira, freqüentemente denominados COTS (*"Commercial Off-The-Shelf"*) (KAYALI, 2002; ATHANASOPOULOU et. al., 2005; JIANG et al., 2006), principalmente em missões científicas onde o desempenho e redução dos custos são fatores de viabilidade para o projeto (PIGNOL, 2010).

Como os componentes COTS são projetados para uso em ambiente terrestre, sua aplicação em um ambiente espacial exige uma avaliação criteriosa para verificar se o uso é adequado, pois nunca podem ser usados completamente "como são", visto que estatisticamente, 40% das falhas em satélites estão relacionadas aos efeitos do ambiente espacial (PIGNOL, 2004).

Antes do uso de COTS em aplicações espaciais é necessário verificar se a confiabilidade requerida para a missão é atendida sob as severas condições operacionais e ambientais (radiação, vibração, temperatura, etc.). Como geralmente são desconhecidas as informações de confiabilidade e resistência a radiação para esses componentes em ambiente espacial, a única maneira de obter essas informações é testá-los. As práticas adotadas pelo JPL ("*Jet Propulsion Laboratory*") para uso de componentes COTS exigem que os testes e ensaios de caracterização sejam realizados e os resultados satisfaçam com sucesso a todos os requisitos antes da utilização no projeto final (KAYALI, 2002).

A seleção de componentes COTS que podem atender aos requisitos de missão é realizada através de testes de classificação ("screening") e de qualificação. Os testes de classificação destinam-se a remover os componentes nãoconformes (peças com defeitos que são susceptíveis a falhas prematuras, conhecida como a mortalidade infantil) com o objetivo de aumentar a confiança na confiabilidade dos componentes selecionadas para o uso. Os testes de qualificação consistem em inspeções visuais e testes mecânicos, elétricos e ambientais. O objetivo desses testes é assegurar que o componente irá atender as especificações de operação e capacidade de sobrevivência sob determinada condição ambiental. As especificações de testes de "screening" e de qualificação dependem fortemente dos requisitos da missão, refletindo diretamente nos custos e prazos. Para projetos que possuem baixos requisitos de qualidade, o número de testes pode ser reduzido. Nesse caso, o desafio é encontrar a melhor relação entre o custo e o requisito de qualidade. Além disso, os resultados dos testes representam o comportamento de um determinado lote de componentes testado e não para todos os componentes fabricados para aquele determinado "part number" (os resultados dos testes de um componente de um fabricante não podem ser aplicados a componentes produzidos por outro fabricante). Esta é uma das principais dificuldades enfrentadas pelos usuários de componentes COTS. Ainda, fabricantes de componentes podem fazer mudanças no processo de fabricação que resultam em pequeno ou até mesmo em nenhum impacto no desempenho do componente quando usado em um ambiente terrestre, mas um sério impacto em um ambiente espacial (PRITCHARD et. al., 2003).

Outro sério obstáculo para uma ampla utilização de componentes COTS em sistemas espaciais é como lidar com a obsolescência precoce destes componentes e adequar-se à sua alta frequencia de atualização, que normalmente gira em torno de 2 a 5 anos. As restrições quanto ao uso de componentes eletrônicos COTS em projetos de equipamentos destinados ao setor espacial impõem aos projetistas a necessidade de incorporar essas restrições aos seus requisitos que, na maioria dos casos é aceitar a redução do

desempenho e confiabilidade. Entretanto, segundo Pignol (PIGNOL, 2010), o uso de componentes eletrônicos comerciais em aplicação espacial deve tornarse mais freqüente nos próximos anos.

Portanto, a opção a ser usada para a aquisição dos componentes irá influenciar fortemente na confiabilidade e prazo de fornecimento dos equipamentos. Quanto maior o nível de qualidade de um componente, maior será o seu custo e prazo de entrega. Outro fator de suma importância no desenvolvimento dos equipamentos destinados ao uso espacial é a temperatura de operação de seus componentes. Estima-se que mais de 55% das falhas em componentes eletrônicos podem ser atribuídas a problemas relacionados a efeitos de origem térmica (RISCO et al., 1997).

Com a redução das dimensões dos componentes e uso de novas tecnologias de empacotamento foi possível reduzir significativamente o volume e a massa dos modernos equipamentos eletrônicos. Porém, se por um lado essa redução propicia o surgimento de equipamentos cada vez menores, por outro lado exige dos projetistas um gerenciamento térmico cada vez mais rigoroso, pois com mais potência para dissipar e menores áreas de troca de calor, remover o excesso de calor tem que ser considerado desde o início do projeto.

Como a confiabilidade de um componente eletrônico é dependente, entre outros fatores, de sua temperatura de operação e de seu nível de qualidade, uma das técnicas empregadas para aumentar a confiabilidade dos equipamentos e assegurar seu correto funcionamento é reduzir as temperaturas de operação de seus componentes. Dessa forma, para um mesmo índice de confiabilidade, a redução da temperatura de operação dos componentes pode propiciar o uso de componentes com menores níveis de qualidade e menores prazos de fornecimento.

Assim, o uso de uma metodologia que permita aos desenvolvedores de equipamentos projetá-los de modo a atender aos requisitos de confiabilidade

através da seleção adequada dos níveis de qualidade dos componentes pode contribuir para a redução dos custos e prazos de desenvolvimento.

1.1 Motivação

Ao longo dos últimos anos o Instituto Nacional de Pesquisas Espaciais (INPE) tem enfrentado grandes desafios no desenvolvimento de equipamentos para seus satélites, em especial aos relacionados com custo e prazo. Um dos principais motivos para os atrasos está relacionado à dificuldade de aquisição de componentes qualificados e sua disponibilidade no momento requerido.

O uso de uma metodologia que permita ao projetista de equipamentos projetálos de modo a atender aos requisitos de confiabilidade imposta pela missão através da escolha adequada dos níveis de qualidade e disponibilidade dos componentes pode contribuir para a redução dos custos e prazos de desenvolvimento desses equipamentos.

1.2 Objetivo

O objetivo desta Tese é propor uma metodologia que permita ao projetista de equipamentos eletrônicos obter um conjunto de soluções de projeto para uma placa de circuito montada (PCA)² para uso espacial. A confiabilidade requerida para a PCA é obtida através da escolha adequada do nível de qualidade de um subconjunto de componentes eletrônicos e do posicionamento ótimo destes componentes na placa de circuito impresso (PCI), de forma a reduzir suas temperaturas de operação e a temperatura média da PCI. O problema é tratado com uma abordagem multiobjetivo. A otimização no posicionamento dos componentes ("*placement*") inclui a minimização simultânea da taxa de falhas total dos componentes, via relação de Arrhenius (COOPER, 2005), a minimização do comprimento das conexões ("*wiring*") entre os componentes e o custo total dos componentes usados na montagem da PCA.

² O termo placa de circuito montada (PCA) no contexto desta Tese será usado para definir um conjunto de componentes montados em uma placa de circuito impresso (PCI).

1.3 Método

A PCI é um componente fundamental para a fabricação de equipamentos eletrônicos e ao contrário do que se imagina, o projeto de uma PCI requer o envolvimento de profissionais de diversas áreas da engenharia. O problema de posicionamento "ótimo" de componentes em PCI exige satisfazer múltiplos objetivos conflitantes que envolvem diferentes disciplinas. Em geral a tarefa de encontrar o "melhor" projeto não é simples e direta.

Métodos heurísticos associados com técnicas de previsão de temperatura de componentes têm sido amplamente usados para resolver problemas de otimização no posicionamento dos componentes em PCI. Para esse tipo de otimização não existe uma única solução que otimize cada um dos objetivos, mas sim um conjunto de soluções eficientes no qual nenhuma solução é melhor que outra solução para todos os objetivos. Este conjunto é chamado de conjunto de soluções não-dominadas. Se os pontos que representam as soluções não-dominadas estão em um espaço contínuo, é possível desenhar uma curva e todos os pontos presentes na curva formam a Fronteira de Pareto. Dessa forma, caberá ao especialista a responsabilidade de escolher uma solução, presente na Fronteira de Pareto, que melhor atenda, não apenas os objetivos considerados na obtenção da Fronteira, mas outros aspectos necessários a concepção final do projeto da PCI.

1.4 Contribuições

A principal contribuição deste trabalho é apresentar, no âmbito do "estado da arte", uma metodologia de projeto para PCA que contribua na obtenção de soluções com melhor confiabilidade, custo e/ou tempo de desenvolvimento. A metodologia pretende fazer uso, de forma otimizada, das taxas de falhas dos componentes eletrônicos de modo a reduzir o tempo de desenvolvimento e o custo final da PCA.

Embora seja possível encontrar na literatura diversos trabalhos que tratam do posicionamento ótimo de componentes eletrônicos, este trabalho difere dos

demais nos seguintes aspectos:

- Permite a obtenção de soluções para o projeto da PCA com menor taxa de falhas através da combinação da escolha adequada do nível de qualidade dos componentes e a redução de suas temperaturas de operação;
- b) Considera o custo e disponibilidade dos componentes como critérios para a otimização;
- c) A metodologia foi desenvolvida para a aplicação espacial, sendo verificada sua aplicabilidade atravéz de estudos de caso com PCIs reais usadas no Programa CBERS;
- d) Considera a otimização de três funções objetivos simultaneamente;
- e) Permite o posicionamento em qualquer posição livre da PCI, incluindo a rotação dos componentes;
- f) Reduz o tempo de desenvolvimento de PCA.

Como contribuição secundária, avaliou-se o aprimoramento do algoritmo multiobjetivo M-GEO (GALSKI, 2006), com uso da técnica de distância de aglomeração ("C*rowding Distance*") (DEB, 2000)

Os resultados obtidos confirmam que a metodologia apresentada neste trabalho além de representar uma nova contribuição a área de conhecimento a que ela se destina, pode contribuir significativamente para a mitigação de um dos problemas que, não apenas a engenharia do INPE, mas todos os fornecedores de equipamentos para uso espacial vêm enfrentando ao longo dos últimos anos.

1.5 Organização da Tese

A tese está organizada em sete capítulos, conforme apresentado na Figura 1.1. No presente Capítulo é descrito o contexto no qual este trabalho está inserido, os fatores que motivam a sua realização e seus objetivos.

O Capítulo 2 apresenta os resultados da revisão bibliográfica dos trabalhos encontrados na literatura envolvendo o problema de posicionamento de

componentes eletrônicos em PCI.

No Capítulo 3 são introduzidas as definições e os conceitos básicos necessários para compreender os modelos e as técnicas de solução de problemas de otimização multiobjetivo. Também são apresentados os principais Algoritmos Evolutivos Multiobjetivo usados para a solução de problemas de otimização multiobjetivo.

Figura 1.1 – Estrutura de apresentação da Tese.

No Capitulo 4 é apresentado o Algoritmo Multiobjetivo de Otimização Extrema Generalizada (M-GEO) e as características que permitem empregá-lo, com sucesso, na resolução do problema de posicionamento de componentes em PCI.

No Capítulo 5, no âmbito do "estado da arte", é apresentada a metodologia desenvolvida para a seleção adequada e o posicionamento ótimo de um subconjunto de componentes eletrônicos em uma PCI.

No Capítulo 6 são apresentados os resultados de testes obtidos com a aplicação da metodologia em casos reais. Com o objetivo de avaliar a eficiência e robustez da metodologia, os resultados dos testes são comparados com os resultados obtidos com a aplicação do método tradicional usado no desenvolvimento de PCI.

No Capítulo 7 são apresentadas as conclusões e discussões a respeito das contribuições do trabalho, bem como as experiências adquiridas e possíveis trabalhos futuros a serem desenvolvidos.

2 POSICIONAMENTO ÓTIMO DE COMPONENTES ELETRÔNICOS EM PCI

Nos últimos anos as indústrias de sistemas eletrônicos têm se preocupado ainda mais com o projeto térmico de seus equipamentos de modo a mantê-los operando dentro de suas faixas de temperatura especificada, com o objetivo de garantir a confiabilidade e a segurança de suas operações. O funcionamento fora de sua faixa de temperatura pode ocasionar o surgimento de falhas catastróficas devido ao estresse térmico em seus componentes elétricos, eletrônicos ou eletro-mecânicos. Estudos (CHANG et al., 2001; KEITH; MITRA, 2003) mostraram que a taxa de falhas em componentes eletrônicos cresce com o aumento da temperatura de operação e, segundo Risco (RISCO et al., 1997), a temperatura é estimada como sendo a responsável por 55% das principais causas de falhas em equipamentos eletrônicos. Práticas do Goddard Space Flight Center (GSFC) mostram que, em geral, o aumento de 10°C na temperatura de um componente eletrônico aumenta em duas vezes a sua taxa de falhas (MING; PRUESSNER, 2009).

O nível tecnológico atual da indústria de semicondutores tem permitido o aumento significativo na densidade dos CIs, de suas velocidades de operação e de suas potências dissipadas, associado à contínua redução nas dimensões físicas de seus encapsulamentos (*"package"*) (MAHAJAN, 2002). A redução das dimensões dos componentes permitiu diminuir significativamente o volume e a massa dos modernos sistemas eletrônicos. Porém, se por um lado essa redução propicia o surgimento de equipamentos cada vez menores, por outro lado exige um gerenciamento térmico cada vez mais rigoroso impondo fortes requisitos ao projeto térmico de tais sistemas.

Com mais potência para dissipar e áreas de troca de calor cada vez menores, garantir que as temperaturas, gradientes e transientes de temperatura dos equipamentos e seus componentes elétricos, eletrônicos e eletromecânicos permaneçam dentro de seus limites especificados tem sido um desafio para os projetistas. O problema térmico deve ser considerado desde o início do projeto pois representa impacto significativo no custo, confiabilidade e desempenho e que deve ser tratado de forma multidisciplinar.

Essa evolução tem trazido situações conflitantes, pois com o aumento da velocidade de operação é recomendado que os componentes estejam o mais próximo possível uns dos outros de forma a manter a integridade do sinal elétrico. Porém, com o aumento da potência dissipada, recomenda-se mantê-los distantes uns dos outros como forma de reduzir suas temperaturas de operação.

Nos sistemas usados em aplicação espacial, os requisitos e precauções tornam-se ainda mais severos, visto que seus componentes, em condição de vácuo, podem somente ser resfriados pela condução e radiação, o que usualmente os levam a operar em ambientes com altas temperaturas. O aumento da temperatura nos equipamentos pode provocar, do ponto de vista de eficiência, impacto considerável aos seus componentes eletrônicos e o surgimento de falhas permanentes, podendo levar à degradação de desempenho na operação do satélite ou a redução de sua vida útil (CHANG et al., 2001).

Como citado anteriormente, a confiabilidade de um componente eletrônico é dependente, entre outros, de sua temperatura de operação e de seu nível de qualidade. Assim, uma das técnicas empregadas para aumentar a confiabilidade dos equipamentos e assegurar seu correto funcionamento é a redução de suas temperaturas de operação. Em geral, esses equipamentos são compostos de componentes eletrônicos montados em PCI e instalados em caixas mecânicas. Nesse caso, o adequado posicionamento dos componentes na PCI é uma das maneiras empregadas para reduzir a sua temperatura de operação.

2.1 Previsão de confiabilidade

A confiabilidade de um sistema é conseqüência da confiabilidade de todas as

suas partes, eletrônicas e mecânicas, incluindo a confiabilidade da montagem dessas partes. A confiabilidade pode ser definida como sendo a probabilidade de um item desempenhar uma função, sob condições especificas, de forma adequada, durante um período de tempo "t" pré-determinado (IEEE, 1990). A confiabilidade pode ser expressa como sendo (IEEE, 1990):

$$R(t) = e^{-\lambda p.t} \tag{2.1}$$

onde, λ_p representa a taxa de falhas total do item e "t" o tempo de missão.

Muitos mecanismos de falha estão associados aos efeitos da deterioração termoquímica dos materiais que ocorrem a uma dada taxa, que é altamente dependente da temperatura. Embora outras relações entre taxa de falha e a temperatura em componentes eletrônicos tenham sido sugeridas (WONG, 1990; QIN, 2006), a relação de "*Arrhenius*" (COOPER, 2005) é o modelo mais difundido entre os profissionais do setor de predição de confiabilidade (ver Tabela 2.1). A taxa de falha individual de um componente "i" é definida por:

$$\lambda_{pi} = D_i + B_i \exp\left[-A_i\left(\frac{1}{Tjc_i + 273} - \frac{1}{298}\right)\right]$$
 (2.2)

onde A_i, B_i e D_i são constantes cujo valor depende do tipo de empacotamento ("*package*") e características elétricas e térmicas do componente, e Tj é sua temperatura de junção³.

A Equação 2.2 é escrita em termos de uma dependência direta da temperatura de junção, que depende basicamente das resistências térmicas de junção e da quantidade de calor dissipada pelo componente. A taxa de falha total do sistema (modelo série) é a soma das taxas de falha dos componentes individuais.

Para a obtenção dos valores dos parâmetros A_i, B_i e D_i, há uma série de manuais, especificações e orientações, que podem ser empregados, conforme

³ A Temperatura de junção (Tj) é a mais alta temperatura encontrada em um semicondutor. Em funcionamento, esta temperatura é mais elevada do que a temperatura do encapsulamento (Tc). Para o cálculo de Tj é necessário considerar a resistência térmica entre o encapsulamento e a junção. Essa informação, em geral, é fornecida pelo fabricante do componente.

apresentado na Tabela 2.1. Esses parâmetros são obtidos com o uso de métodos empíricos de previsão de falhas. Esses métodos, em geral, são baseados em modelos desenvolvidos a partir de curvas estatísticas de históricos de dados de falhas, que podem ser coletados em campo ou dos fabricantes de componentes. Existem diversos métodos empíricos que foram criados para aplicações específicas, como militares, telecomunicação, automotiva, etc.

Método de Predição	Área de Aplicação	Última atualização	
NTT Procedure	Telecomunicação	1985	
SAE Reliability	Automotiva	1987	
MIL-HDBK-217F	Militar	1995⁴	
China 299B	Militar	1998	
Siemens SN29500	Produtos Siemens	1999	
RDF 2000	Telecomunicação	2000	
PRISM	Militar/Comercial	2000	
Bellcore/Telcordia	Telecomunicação	2006	

Tabela 2.1 – Principais manuais para predição de falhas para componentes elétricos e eletroeletrônicos.

Embora os valores dos parâmetros e métodos empregados para obtê-los sejam questionados quanto à validade dos modelos empíricos usados por serem considerados excessivamente pessimistas, o manual MIL-HDBK-217 (USA, 1995), desenvolvido pelo Departamento de Defesa Americano com o objetivo de unificar os métodos de predição de confiabilidade para produtos militares, continua fontes de referência ainda sendo uma das utilizadas (AKHMEDJANOV, 2001; MING; PAULA, 2009). Esse manual formou a base para muitos outros bancos de dados e métodos para prever a confiabilidade de sistemas eletrônicos. Nele podem ser encontradas duas formas de predição de confiabilidade: (i) predição com contagem de partes e (ii) predição através da análise de estresse das partes.

⁴ Devido a popularidade do manual MIL-HDBK-217, o Defense Standardization Program Office (DSPO) decidiu revitalizar o MIL-HDBK-217. Em maio de 2008 iniciaram os trabalhos de revitalização com a participação de vários segmentos da indústria americana (Boeing, NSWC Crane, Raytheon, Eaton Areospace, Sandia National Lab, e outros). Foram programadas várias reuniões de trabalho porém sem uma data definida para o término dessa atualização. (Para maiores informações ver Harms, 2010).

(i) A predição com contagem de partes costuma ser utilizada para predição de confiabilidade na etapa inicial do ciclo de desenvolvimento do equipamento e tem como principal objetivo estimar a confiabilidade em relação à sua especificação de confiabilidade. Esse método não requer um grande detalhamento sobre os circuitos que compõem o equipamento, mas apenas a quantidade de partes, seu nível de qualidade e o ambiente no qual o equipamento irá operar. A taxa de falhas total do equipamento é calculada contando os componentes similares e dividindo-os em grupos, conforme seus diferentes tipos. O número de componentes de cada grupo é multiplicado por uma taxa de falhas genérica fornecida pelo manual MIL-HDBK-217F. Finalmente, as taxas de falhas dos diferentes grupos de componentes são somadas dando a taxa de falhas final, conforme definida na Equação 2.3.

$$\lambda_{Equip} = \sum_{i=1}^{i=n} N_i \left(\lambda_g . \pi_G \right)$$
(2.3)

onde, λ_g é a taxa de falhas genérica da parte (falhas/10⁶ horas), π_{α} é o fator de qualidade para a parte, "N_i" é a quantidade de partes similares e " i " equivale ao índice dos diferentes " n " grupos.

O método de contagem de partes usualmente resulta em uma estimativa mais conservativa, (i.e, taxa de falhas maior) se comparada com o método de análise de estresse.

(ii) A predição através da análise de estresse costuma ser utilizada muito mais tarde no ciclo de desenvolvimento do equipamento, quando o projeto dos circuitos já está praticamente pronto. Esse método é similar ao método de contagem de partes porque inclui a soma das taxas de falhas. Porém, a taxa de falhas de cada um dos componentes é calculada separadamente conforme os graus de estresse específico ao qual cada componente é submetido (umidade, temperatura, vibração e voltagem). Para designar os graus de estresse para cada componente, o projeto dos circuitos e o ambiente previsto para sua operação devem ser muito bem definidos. Neste método, cada classe de

componente possui uma fórmula para o cálculo de sua taxa de falhas, conforme apresentado na Tabela 2.2.

Classe	Fórmula
Transistores (baixa frequencia)	$\lambda_{P} = \lambda_{b}.\pi_{T}.\pi_{A}.\pi_{R}.\pi_{S}.\pi_{Q}.\pi_{E}$
Diodos (baixa frequencia)	$\lambda_{P} = \lambda_{b}.\pi_{T}.\pi_{C}.\pi_{S}.\pi_{Q}.\pi_{E}$
Resistores	$\lambda_{P} = 10.(\lambda_{b}.\pi_{T}.\pi_{P}.\pi_{S}.\pi_{Q}.\pi_{E})$
Capacitores (CMR, CKR)	$\lambda_{P} = \lambda_{b}.\pi_{T}.\pi_{CV}.\pi_{SR}.\pi_{Q}.\pi_{E}$
Microprocessadores e Portas Lógicas	$\lambda_P = (C_1 \cdot \pi_T + C_2 \cdot \pi_E) \cdot \pi_Q \cdot \pi_L$
Memórias	$\lambda_P = (C_1 . \pi_T + C_2 . \pi_E + \lambda_{CYC}) . \pi_Q . \pi_L$
Onde: $\pi_{\tau} = 0,1 \exp \left[\left(\frac{-Ea}{8,617e^{-5}} \right) \right]$	$\left(\frac{1}{Tjc_i + 273} - \frac{1}{298}\right)\right]$

Tabela 2.2 – Fórmulas para cálculo da taxa de falhas, método de análise de estresse.

O parâmetro λ_p é a taxa de falha para o componente em uma determinada condição ambiental. Para cada tecnologia de componente, um valor para a taxa de falhas base λ_b é definido. Esta taxa de falhas é considerada como sendo uma taxa de falhas média representativa para a tecnologia específica baseado nos dados de falhas em campo. Dependendo da classe do componentes, outros parâmetros como, C₁ (taxa de falhas dada pela complexidade do "*die*"), C₂ (taxa de falhas do encapsulamento) e λ_{CYC} (taxa de falhas causado por ciclos de escrita/leitura em memórias) são aplicados.

A taxa de falhas do componente é calculada pela multiplicação da taxa de falhas base (λ_b) e os fatores conhecidos como fatores- π . Esses fatores levam em consideração vários aspectos do componente, tais como: condições de operação (π_T para temperatura e π_V para voltagem), qualidade do componente (π_Q), maturidade (π_L , baseado na idade do componente e/ou tecnologia) e ambiental (π_E , baseado no condições ambientais ao qual o componente será submetido).

Embora a fórmula para os diferentes tipos de componentes sejam

semelhantes, os valores para a taxa de falhas base (λ_b) e fatores- π podem variar muito. Um componente operando nas mesmas condições de temperatura e ambiente pode apresentar diferentes taxas de falhas, dependendo do seu nível de qualidade. A Tabela 2.3 apresenta diferentes taxas de falhas, em FIT⁵ para alguns tipos de componentes.

Componente	Nível de qualidade do componente					
Componente	λ_{p1}	λ_{p2}	λ_{p3}	λ_{p4}		
Capacitor cerâmico CKR	0,0042	0,0249	0,0748	0,1241		
Resistor RCR	0,0139	0,0464	0,1392	0,4640		
Resistor RLR	0,0008	0,0039	0,0111	0,0392		
Diodo 1N6642	0,1096	0,2994	0,7186	1,6468		
Transistor 2N2222A	0,0142	0,0242	0,0486	0,1066		
74HC04 (DIP)	1,6148	6,4591	12,9182	64,5911		
80C51 (DIP)	15,9311	63,7242	127,4484	637,2421		

Tabela 2.3 – Taxa de falhas para diferentes níveis de qualidade

Nota:

- Temperatura da PCI: 55°C

- Diodo e transistor: λ_{p1} (JANS); λ_{p2} (JANTXV); λ_{p3} (JANTX); λ_{p4} (JAN);

- Capacitor: λ_{p1} (D); λ_{p2} (C); λ_{p3} (S); λ_{p4} (B); (D, C, S e B definem o nível de qualidade)

- Resistor: λ_{p1} (S); λ_{p2} (R); λ_{p3} (P); λ_{p4} (M); (S, R, P e M definem o nível de qualidade)

Fonte: ALD (2010).

O método de análise de estresse normalmente fornece uma taxa de falhas mais baixa que o método com contagem de partes, porém, dado o nível de análise exigido, esse método demanda muito mais tempo que outros métodos.

A taxa de falhas obtidas no método de contagem de partes equivale, grosso modo, a taxa de falha do método de análise de estresse na temperatura de 25°C. Se a temperatura de operação dos componentes for maior do que 25°C é recomendável o uso deste último como o método para o cálculo da taxa de falhas.

2.2 Projeto de Placas de Circuito Impresso

Diferente do que se possa imaginar, o projeto de uma PCI envolve profissionais de diversas áreas da engenharia. Tradicionalmente, o projeto de uma placa de circuito impresso inicia-se por uma análise dos componentes que, do ponto de

⁵ FIT (Failure In Time) é a unidade definida como uma falha por bilhão de horas (10⁻⁹)

vista térmico, são considerados críticos, i.e., dissipam muita potência ou são sensíveis à temperatura de junção. Essas informações identificam o nível de gerenciamento térmico que será necessário e sugerem o posicionamento ("*placement*") preliminar dos componentes. O posicionamento pode ser descrito como a distribuição geométrica de todos os componentes do circuito na superfície definida para a PCI. O especialista mecânico pode fornecer um desenho mecânico preliminar se a PCI fizer uso de quadros de fixação (estruturas metálicas instaladas na PCI usadas para reforço mecânico e auxílio na dissipação de calor, conhecidos por "*frame*").

As características físicas, elétricas, térmicas e taxa de falhas dos componentes e da PCI são determinadas para que sejam criados os modelos térmicos, mecânicos e de confiabilidade preliminares da placa. Nesta fase, os especialistas de *"hardware"* e térmica trabalham de forma colaborativa. O resultado dessa interação permite fornecer, entre outros, requisitos ao projetista de *layout* para o posicionamento dos componentes na PCI. Embora o projetista receba esses requisitos, a distribuição, em geral, é manual e fortemente baseada em sua experiência.

A etapa seguinte é o roteamento ("*routing*") que consiste em encontrar o caminho de ligação entre um conjunto de pontos e um conjunto de blocos em um plano bi-dimensional sem que nenhum dos caminhos cruze outro caminho em um mesmo plano ("*layer*"). No caso de placas multicamadas ("*multilayer*") são utilizadas vias de passagem para realizar as conexões em planos diferentes. Essa etapa é geralmente realizada por ferramentas especializadas (OrCAD®, www.cadence.com; PCAD®, www.altium.com, e outros).

Paralelamente à atividade de *layout*, é realizada a pesquisa das características térmicas e taxa de falhas dos componentes, pois essa atividade pode levar um longo tempo, quantificado em semanas ou meses.

Após concluídas as atividades de posicionamento e roteamento e da atividade

de pesquisa das características térmicas e taxas de falhas, uma nova análise térmica é realizada com a transferência dessas informações para ferramentas especificas (por exemplo, BETASoft®, www.betasoft.com; Flotherm®, www.mentor.com; IceBoard®, www.ansys.com; entre outros). Neste momento, qualquer alteração no posicionamento dos componentes implica em considerável retrabalho, muitas vezes demorado e dispendioso.

O resultado da análise térmica pode mostrar que são necessárias mudanças de posicionamento dos componentes. Estas informações são comunicadas aos especialistas de *"hardware"* e de *layout* para que o processo seja repetido tantas vezes quanto for necessário.

Por último, o cálculo da confiabilidade da placa é realizado pelo especialista em predição de confiabilidade. São consideradas as taxas de falhas dos componentes em função das suas temperaturas de junção. Como resultado desta análise, embora não seja comum, pode ser necessário um novo posicionamento.

А

Figura **2.1** apresenta o fluxograma com as principais etapas do processo de desenvolvimento de uma PCI.

Figura 2.1 – Principais etapas do processo de desenvolvimento de uma PCI.

A complexidade no projeto de modernas PCIs, que podem possuir um grande número de componentes operando em altas velocidades e diferentes dissipações térmicas, tem estimulado o desenvolvimento de ferramentas que possibilitem automatizar tarefas e simplificar etapas do projeto dessas PCIs.

Nos últimos anos vários estudos acadêmicos têm abordado o problema de posicionamento ótimo de componentes em PCIs, considerando objetivos

elétricos, térmicos e mecânicos, conforme apresentado na Seção 2.3.

Os resultados desses estudos mostraram que o simples objetivo de minimizar o comprimento das conexões pode produzir regiões de pontos quentes ("*hot spots*") na PCI provocando o aumento da taxa de falhas dos componentes localizados nessas regiões e conseqüente redução da confiabilidade. Por isso, vários esforços têm sido feito para obter soluções de posicionamento de forma a atender o compromisso entre o comprimento das conexões e as temperaturas dos componentes. Em geral os métodos empregados na obtenção das soluções baseiam-se em métodos heurísticos associados a várias técnicas de previsão de temperatura para os componentes e superfícies das PCIs.

2.3 Revisão Bibliográfica de métodos para posicionamento de componentes em PCI

Na literatura há diversos trabalhos que abordam o problema de posicionamento de componentes em PCI. Historicamente, o desenvolvimento da técnica de posicionamento de componentes em PCI teve como principal objetivo a minimização das conexões entre os componentes (*"routability"*). Uma das primeiras tentativas foi apresentada por Quinn e Breuer (1979). No estudo, eles usaram o método conhecido como *"force-directed"* com abordagem mono-objetivo. Este método é análogo à lei de Hooke. Uma vez definida a interconexão entre as células "i" e "j", a magnitude da força exercida pela célula "i" na célula "j" é proporcional à distância entre as células. Em termos de *"routability*", as forças correspondem às conexões entre os componentes.

Se as células puderem mover-se livremente, elas irão mover-se na direção da força resultante até que o sistema atinja o equilíbrio. O problema de posicionamento se resume em um problema para resolver, de forma simultânea, um conjunto de equações lineares para determinar os locais de equilíbrio das células.

Quinn e Breuer (1979) dividiram o procedimento para o posicionamento em duas fases. Na primeira, uma força proporcional à distância entre os componentes e o elemento de conectividade é calculada. O melhor posicionamento é encontrado quando a soma vetorial dos vetores "força", que agem sobre os módulos é minimizada. A disposição dos componentes na PCI obtida no final da primeira fase é geralmente inaceitável devido a grande área de sobreposição entre os mesmos ("*overlap*"). Para resolver este problema, na segunda fase são usadas técnicas para eliminar a intersecção entre os componentes. Nesta fase também são tratados os casos de componentes que requerem um posicionamento pré-determinado.

Dada a natureza do problema de posicionamento de componentes, uma das limitações apresentadas no trabalho de Quinn e Breuer (1979) é a possibilidade de gerar soluções que apresentem regiões de "*hot spot*", e dessa forma reduzir a confiabilidade.

Osterman e Pecht (1990), usaram a técnica "*force-directed*" proposta por Quinn e Breuer (1979) para o posicionamento de componentes, porém com uma abordagem multiobjetivo. Os objetivos foram combinados com o uso do método de agregação de funções e uso da soma ponderada ("*weighting factor*").

Os objetivos otimizados foram: i) a confiabilidade baseada no modelo de falhas, que incorporou a temperatura dos componentes (relação de *Arrheinus*) e, ii) a conexão entre os componentes. O método foi aplicado em PCIs e o mecanismo de transferência de calor considerado foi a convecção através do resfriamento por ventilação forçada e uso de rede térmica resistiva para prever as temperaturas dos componentes. O método foi desenvolvido inicialmente para o posicionamento de componentes distribuídos em uma única linha e em seguida estendido para duas dimensões, com o livre posicionamento dos componentes.

Huang et al. (2002), propuseram uma metodologia baseada na lógica "fuzzy" associado ao algoritmo "force-directed" para resolver o problema de posicionamento de "chips" sobre um MCM (multichip module substrate). O principal objetivo da metodologia era aumentar a confiabilidade da MCM e

reduzir o comprimento total das conexões entre os chips. Para o aumento da confiabilidade, assim como no trabalho proposto por Osterman e Pecht (1990), a metodologia propõe a redução das temperaturas dos componentes (relação de *Arrhenius*) através de uma distribuição térmica uniforme no MCM. As funções minimizadas (densidade de potência e comprimento das conexões) foram transformadas em uma única função "custo" com o uso da técnica de agregação das funções e uso da soma ponderada.

O posicionamento inicial dos chips no substrato era realizado de forma aleatória e melhorado através de um método iterativo. No final do processo de posicionamento a solução pode produzir "*chips*" com sobreposição. Uma das limitações do processo é não considerar o problema de sobreposição ("*overlap*") na fórmula do "custo". Quando a sobreposição ocorre, o "*chip*" de menor dissipação de potencia é reposicionado.

Vários outros trabalhos exploraram a influência da temperatura no cálculo da confiabilidade através da relação de *Arrhenius*. Pecht et al. (PECHT et al., 1986) investigaram a influência da temperatura no cálculo do período médio entre falhas - MTBF (*Mean Time Between Failures*) de componentes eletrônicos como função dos seus posicionamentos na PCI. Embora nenhum algoritmo para a busca de soluções ótimas tenha sido utilizado no estudo, os resultados mostraram que o uso da temperatura média (calculada com as temperaturas obtidas para cada componente), como critério de escolha para o posicionamento nem sempre apresentam os melhores valores para o MTBF. Como nenhum algoritmo de busca foi utilizado, para evitar o cálculo de todos os arranjos possíveis de posicionamento, os autores propuseram uma solução estatística para reduzir, dentro do nível de confiança estabelecido, o número de arranjos a serem avaliados.

Gao e Chen (1993) apresentaram um algoritmo de posicionamento com particionamento hierárquico em conjunto à técnica de corte-mínino e o método da soma ponderada. O algoritmo, segundo os autores, tenta minimizar o

comprimento total das conexões entre os componentes e os tempos de atraso máximos dessas conexões. Neste caso, o efeito térmico não foi considerado como critério para o processo de otimização. Os atrasos gerados pelas conexões são calculados através de um arranjo de capacitores e resistores proporcionais ao comprimento dessas conexões. Quanto maior o comprimento das conexões, maior será o tempo de atraso. O cálculo dos atrasos máximos do circuito inclui também os atrasos internos dos componentes. A idéia do algoritmo de posicionamento com particionamento hierárquico é manter uma fila de regiões em que os componentes serão posicionados e então dividi-las em sub-regiões. A cada iteração do processo de particionamento, a região no topo da fila é dividida em duas novas sub-regiões e as sub-regiões resultantes são colocadas no final da fila. Se uma sub-região é pequena o bastante para o posicionamento do componente, a sub-região não será mais dividida e, portanto, não será colocada no final da fila. O processo de particionamento continua até que o posicionamento de todos os componentes seja realizado. Durante o processo de particionamento, regras de compensação são usadas para garantir que a posição gerada seja válida, evitando a sobreposição dos componentes. Em conjunto ao particionamento hierárquico, a técnica de cortemínimo é empregada o que permite reduzir o efeito do particionamento das regiões no comprimento das conexões pois um pequeno corte leva a pequenos comprimentos de conexão.

Queipo et al. (1998), apresentaram uma solução para o posicionamento de componentes em uma PCI através do uso de uma metodologia de otimização multiobjetivo. O método combina o uso de um algoritmo genético (CSGA), uma ferramenta para o cálculo de transferência de calor (FHTS) e uma estratégia para otimização multiobjetivo (MUA). O objetivo foi minimizar a taxa de falhas total dos componentes (relação de *Arrhenius*) e a minimização do comprimento total das conexões entre os componentes. As melhores soluções foram obtidas aplicando o conceito do conjunto das soluções Pareto-ótimas e a estratégia para a otimização multiobjetivo. Essa estratégia permite ao projetista inferir no processo de escolha, de acordo com sua preferência, de modo a identificar o

"melhor" posicionamento para o componente (problema de decisão). As funções objetivo foram combinadas com o uso do método de agregação de funções e soma ponderada.

Deb et al. (2004), propuseram como estratégia de otimização o uso do algoritmo NSGA-II associado a rotinas para cálculo das temperaturas dos componentes. O objetivo foi minimizar a taxa de falhas total dos componentes (relação de *Arrhenius*) e a minimização do comprimento total das conexões entre os componentes. A principal diferença desse trabalho em relação aos anteriores foi o uso de um algoritmo que incorporava o elitismo no processo de otimização, além de aplicar o conceito de não-dominância. Adicionalmente, a densidade populacional também foi considerada de modo a distribuir melhor os indivíduos na Fronteira de Pareto com o uso da técnica da distância de aglomeração ("*crowding distance*"). O algoritmo elitista NSGA-II é considerado um dos melhores otimizadores para problemas multiobjetivos.

Suwa e Hadin (2007, 2010) desenvolveram uma metodologia para o posicionamento de componentes eletrônicos em uma PCI com abordagem multiobjetivo com uso da técnica de agregação de funções objetivo. Os critérios térmicos, elétricos e de posicionamento são considerados (temperatura de junção dos componentes, densidade das conexões entre os componentes, comprimento das conexões de alta frequencia e os componentes com localização crítica). A metodologia consiste na combinação de redes neurais artificiais e o método de superposição, para estimar as temperaturas da superfície da PCI e as temperaturas de junção dos componentes, associado a um algoritmo genético. A fim de encontrar as soluções de forma eficiente, o processo de otimização é realizado em duas etapas distintas. Na primeira etapa (etapa 1), a população inicial do algoritmo genético é selecionado aleatoriamente. Na segunda etapa (etapa 2) o algoritmo genético começa com uma população que consiste de resultados otimizados a partir da etapa 1. Para aplicações em que a precisão dos resultados térmicos não é crítico, a etapa 1 é suficiente e a etapa 2 é omitida. Isso permite reduzir o tempo de execução pois para a etapa 1 o tempo é menor se comparado ao tempo de execução da etapa 2 porém menos preciso na estimativa das temperaturas de junção e da superfície da PCI.

Para tornar o processo ainda mais eficiente, sempre que ocorrer a sobreposição ("*overlap*") dos componentes a temperatura de junção e a densidade das conexões não são calculadas e uma penalidade é adicionada à função objetivo. As melhores soluções para o posicionamento dos componentes são obtidas com o uso do conceito de não-dominância.

Felczak et al. (2009), implementaram um modelo numérico para a otimização do posicionamento de dispositivos eletrônicos em substrato. O modelo inclui dois subprogramas principais. O primeiro é um algoritmo genético usado para a busca das soluções ótimas e o segundo consiste de uma ferramenta para o cálculo das temperaturas dos componentes.

As funções objetivo otimizadas foram a temperatura total dos componentes e o comprimento total das conexões entre os componentes. A técnica utilizada para a agregação das funções objetivo foi a da soma ponderada O modelo foi avaliado considerando, como critério de otimização, as temperaturas máxima, média e mínima.

Para avaliar o desempenho do modelo foram propostos dois estudos de caso, onde ambos foram resfriados por ventilação forçada. Para o segundo estudo de caso a ferramenta para o cálculo das temperaturas dos componentes foi substituído pelo software comercial Ansys Workbenck v10.0 (www.ansys.com).

Os resultados obtidos na simulação foram comparados com os resultados práticos e apresentaram boa aproximação. Diferente do observado por Pecht et al. (1986), a temperatura média usada como critério de otimização produziu os melhores resultados. Ainda, de acordo com Felczak et al., a temperatura

máxima também produziu bons resultados porém, nem todos os componentes têm seu posicionamento otimizado.

Ismail e Yusof (2009) propuseram uma estratégia multiobjetivo para minimizar a distribuição do calor gerado por circuitos integrados (CI) instalados em uma PCI e minimizar as dimensões da própria PCI. O problema foi tratado com o uso de um algoritmo genético multiobjetivo com abordagem de agregação das funções através do uso do método da soma ponderada (WMOGA). Para a geração das soluções, diversos pesos foram experimentados para cada um dos objetivos. Para a otimização, a distribuição inicial dos componentes na PCI foi dividida em duas etapas. A primeira visa identificar qual o componente deve ser selecionado e na segunda etapa, define-se gual a região da PCI onde o componente deve ser colocado. Esse procedimento, chamado de "formulação da população inicial de parâmetros multi-restritivos (FIPMCP) foi adotado devido a natureza dos algoritmos genéticos, onde a colocação inicial dos componentes pode ocorrer em qualquer posição da PCI. Para o cálculo das temperaturas dos componentes foi usado o modelo eletro-térmico (ETM) o qual permite a previsão das temperaturas de maneira rápida e com relativa precisão em comparação a outros métodos analíticos e numéricos. As melhores soluções são obtidas aplicando o conceito de não-dominância nas soluções geradas pelo algoritmo.

Pereira et al. (2010), propuseram uma metodologia para determinar o posicionamento ótimo dos componentes em uma PCI, para uso em aplicação espacial, considerando o livre posicionamento dos componentes e a condução e radiação como únicos mecanismos de transferência de calor. A metodologia foi implementada utilizando um algoritmo genético simples (SGA) como ferramenta de otimização multiobjetivo com abordagem de agregação das funções objetivo e uso de soma ponderada e uma ferramenta de análise térmica para calcular a temperatura da PCI e de seus componentes. A metodologia é similar aos trabalhos anteriores que fazem uso de SGA, porém aplicada a um caso real de uso em aplicação espacial. O conjunto de soluções geradas pela metodologia foi comparado com a solução obtida com o uso do

método convencional para desenvolvimento de PCIs. Os resultados demonstraram que a metodologia proposta era bastante promissora.

Diferente dos trabalhos anteriores, o autor et al. (PEREIRA et al., 2011) apresentaram o estudo de uma metodologia para o posicionamento ótimo de componentes eletrônicos em PCI destinadas à aplicação espacial. No estudo, a confiabilidade requerida e a redução do custo foram obtidas através da escolha adequada do nível de qualidade dos componentes e seu posicionamento na PCI. O problema foi tratado com uma abordagem multiobjetivo onde o posicionamento dos componentes considerou a minimização da taxa de falhas da PCI (relação de Arrhenius) e a minimização do comprimento das conexões entre os componentes. Os resultados demonstraram redução significativa da taxa de falhas total do sistema, de seu custo e do comprimento total das conexões, indicando a eficácia da metodologia utilizada.

Embora a metodologia tenha apresentado resultados promissores, apresentou como desvantagens a sensibilidade dos diferentes pesos multiplicadores atribuídos aos valores das funções objetivo usados para obter a Fronteira de Pareto. Os autores acreditam que o uso de algoritmo multiobjetivo poderia fornecer resultados ainda mais expressivos.

A Tabela 2.4 apresenta um resumo dos principais trabalhos encontrados na literatura que abordam o posicionamento de componentes em PCI.

Autor	Ano de publicação	Função Objetivo	Metodologia de otimização	Método de cálculo das temperaturas	Mecanismo de transferência de calor	Melhores soluções	Método de remoção de overlap
Quinn e Breuer	1979	Comprimento das conexões entre os componentes ("wiring")	Algoritmo "force- directed".	NA	NA	Representação gráfica	Eliminado na fase II do algoritmo
Pecht et al.	1986	Confiabilidade (MTBF) (relação de Arrhenius)	Solução estatística (arranjo dos componentes)	Equações de convecção forçada com o uso da técnica diferenças finitas.	Convecção forçada	Resultados obtidos com as Temp. Máx. e Mín.	NA (componentes distribuídos uniformemente)
Osterman e Pecht	1990	Confiabilidade (relação de Arrhenius) e comprimento total das conexões ("wiring")	Combina o algoritmo "force-directed" e método de soma ponderada	Série de Taylor	Convecção forçada	Menores valores para a Confiabilidade	Repetidas execuções do processo de posicionamento (demorado)
Gao e Chen	1993	Comprimento total das conexões ("wiring") e os tempos de atraso máximos das conexões	Algoritmo de posicionamento com particionamento hierárquico e técnica de corte-mínimo	NA	NA	Resultados obtidos com as Temp. Máx. e Mín.	NA (componentes distribuídos uniformemente)
Lee Jing et al	1995	Confiabilidade (relação de Arrhenius) e comprimento total das conexões ("wiring")	Resolução de equações lineares e técnica de superposição.	Ordered best-first search algorithm (OBFSA)	Convecção forçada	Soluções Pareto-ótimas.	NA (componentes distribuídos uniformemente)
Queipo et al.	1998	Confiabilidade (relação de Arrhenius) e Comprimento total das conexões ("wiring")	Algoritmo genético com uso do método de soma ponderada (CSGA)	Flow and heat Transfer Solver (FHTS) baseado no software (ROTFLO2)	Convecção forçada	Soluções Pareto-ótimas e estratégia para escolha da melhor solução	NA (componentes distribuídos uniformemente)
Huang et al.	2002	Densidade de potência (taxa de falhas) e comprimento das conexões ("wiring")	Baseada na lógica "fuzzy" associada ao algoritmo <i>force-directed.</i> A temperatura é calculada pelo método de elementos finitos.	Uso de equações de elementos finitos	Condução	Menor valor da função custo.	Procedimento para mover o componente com menor potência dissipada.

Tabela 2.4 – Resumo dos trabalhos relacionados ao posicionamento ótimo de componentes em PCI.

continua

Lee Jing	2003	Distribuição térmica total dos componentes	Uso do algoritmo "thermal force-directed placement" (TFPA), baseado no modelo análogo ao mecanismo de condução de calor	Programa TAMS (série de Fourier)	convecção forçada	Menor valor para Tmax.	Manualmente
Deb et al	2004	Confiabilidade (relação de Arrhenius) e Comprimento total das conexões ("wiring")	Algoritmo genético Multiobjetivo (NSGA-II)	Modelo de transferência de calor	Condução	Soluções Pareto-ótimas	NA (componentes distribuídos uniformemente)
Suwa e Hadin	2007	Tj dos componentes, densidade das conexões entre os componentes, comprimento das conexões de alta frequencia.	Algoritmo genético com uso do método de soma ponderada	Redes neurais artificiais combinado com o método de superposição	Convecção	Soluções Pareto- ótimas.	Sobreposição é considerada na função objetivo com uso de função penalidade
Ismail e Yusof	2009	Distribuição térmica e dimensões da PCI.	Algoritmo Genético Multiobjetivo com uso do método da soma ponderada (WMOGA)	Uso de modelo de resistência térmica (ETM)	Condução	Soluções Pareto- ótimas.	Sobreposição considerada com parâmetro de restrição.
Felczak et al.	2009	Distribuição térmica total dos componentes e tamanho da PCI	Algoritmo genético multiobjetivo	Uso de equações Navier-Stokes e Kirchhoff-Fourier resolvidas usando o método das diferenças finitas.	Convecção forçada	Menores valores para Tmáx ou Tmádia.	NA (componentes distribuídos uniformemente)
Pereira et al.	2010	Confiabilidade (relação de Arrhenius) e Comprimento total das conexões ("wiring")	Algoritmo genético Simples	Software THANMODEL	Condução e radiação	Soluções Pareto- ótimas.	Sobreposição é considerada na função objetivo com uso de função penalidade

Tabela 2.4 - Conclusão

3 OTIMIZAÇÃO E ALGORITMOS EVOLUTIVOS MULTIOBJETIVOS

De modo geral, otimizar refere-se a atitude de melhorar o que já existe até o ponto máximo permitido, que alcance um determinado estado de "suposta perfeição", dentro dos próprios limites do objeto, da situação ou natureza. Otimizar pode ainda ser definido como a necessidade de se obter eficiência, que pode ser dividida nas etapas de identificação das alternativas e da tomada de decisão. Assim, o processo de otimização refere-se à busca das melhores soluções, considerando os objetivos associados a um determinado problema, que sejam viáveis em função de restrições impostas ou inerentes a ele.

Em engenharia, um problema de otimização pode ser traduzido matematicamente na forma (VANDEPLAATS, 1998):

Minimizar:	F(x)		(3.1)
Sujeito a:	$g_j(x) \leq 0,$	j = 1, 2,, m	(restrições desigualdade)
	$h_k(x)=0,$	K = 1, 2,, I	(restrições igualdade)
	$x_i^{(inf)} \leq x_i \leq x_i^{(sup)}$	i = 1, 2,, n	(restrições laterais)
	$\mathbf{X} = \begin{bmatrix} \mathbf{X}_1, \mathbf{X}_2, \mathbf{X}_n \end{bmatrix}$		(variáveis de projeto)

Uma solução consiste em um vetor de "n" variáveis de projeto $X = (x_1, x_2, ..., x_n)$. O vetor X é considerado viável se ele atender a todas as restrições impostas, caso contrário ele será considerado inviável. O conjunto de restrições delimita a região do espaço de projeto que contém soluções viáveis para o problema.

Tradicionalmente, o problema de otimização é resolvido numericamente por meio de métodos que utilizam a informação do gradiente da função objetivo para guiar a busca no espaço de projeto. Estes métodos são muito eficientes quando a função objetivo é contínua e não apresenta vários mínimos locais. Em problemas multimodais eles levam a busca a convergir para o mínimo local mais próximo de onde esta se inicia. Embora uma estratégia de re-inicialização possa ser utilizada para reduzir este problema, uma das características

intrínsecas da busca baseada em gradiente é a tendência a produzir soluções sub-ótimas. Outras dificuldades para utilização de algoritmos que necessitem da informação do gradiente surgem quando o problema a ser atacado apresenta espaço de projeto descontínuo ou quando as variáveis são discretas. Por estas razões, nos últimos anos têm surgido vários métodos para atacar problemas de otimização que não fazem uso de informação do gradiente mas utilizam-se de estratégias de busca global pela solução ótima. Embora sejam normalmente mais custosos computacionalmente que os algoritmos do tipo gradiente (YAO, 1999), eles tem se beneficiado com o aumento da capacidade de processamento dos novos computadores, tornando-se uma ferramenta importante na solução de problemas de otimização.

3.1 Definição do Problema de Otimização Multiobjetivo

O problema de otimização pode apresentar uma (otimização mono-objetivo), ou várias funções objetivo (otimização multiobjetivo). Ao contrário da otimização mono-objetivo, na otimização multiobjetivo não existe uma única solução que otimize cada um dos objetivos, mas sim um conjunto de soluções de compromisso no qual nenhuma solução é melhor que outra solução para todos os objetivos. Cabe ao decisor ("*decision maker*") a escolha de uma solução dentre as soluções ótimas geradas ao resolver-se o problema multiobjetivo.

A formulação geral para o problema de otimização multiobjetivo com restrições de igualdade e desigualdade pode ser representada por (VANDERPLAATS, 1999):

Em um problema multiobjetivo, as soluções obtidas no espaço de projeto são

mapeadas para o espaço multidimensional de funções objetivo, como exemplificado na Figura 3.1, para um espaço de funções objetivo tridimensional.

Figura 3.1 – Representação do mapeamento do espaço das variáveis de projeto para o espaço de funções objetivo, para um problema com duas variáveis e três funções objetivo.

Um problema de otimização multiobjetivo pode ser definido como um problema de procura de um vetor de variáveis de projeto que satisfaça certas restrições e otimize um vetor cujos elementos são as funções objetivo. Em geral os objetivos são conflitantes, onde uma solução pode ser a melhor do ponto de vista de um objetivo, mas não em relação aos demais objetivos. Nesses problemas empregam-se o conceito de dominância de Pareto para comparar as soluções, pois não existe uma única solução para o problema, mas um conjunto de soluções de compromisso, chamadas de soluções não-dominadas. No conjunto de soluções não-dominadas, não existe uma solução que seja melhor que qualquer uma das outras para todas as funções objetivo.

Uma solução $x^{(1)}$ é dita dominar uma solução $x^{(2)}$ quando as seguintes condições são satisfeitas (VON ZUBEN, 2006):

- 1. A solução $x^{(1)}$ não é pior que a solução $x^{(2)}$ em nenhum dos objetivos, ou seja, fm $(x^{(1)}) \le \text{fm}(x^{(2)})$ para todo m = 1, 2,m.
- 2. A solução $x^{(1)}$ é estritamente melhor que a solução $x^{(2)}$ em pelo menos um objetivo, ou seja, fm($x^{(1)}$) < fm($x^{(2)}$) para algum m $\in \{1, 2, ..., m\}$.

Quando uma solução é estritamente melhor em relação as outras soluções em pelo menos uma das funções objetivo, mas é estritamente pior com relação a pelo menos uma das demais funções objetivo, diz-se que ela é solução nãodominada. Considerando o exemplo da Figura 3.2 como sendo as soluções obtidas em um problema de minimização, a solução "a" domina as soluções "b" e "c", assim como a solução "d" também domina as soluções "b" e "c". As soluções "a", "d" e "e" não são dominadas por nenhuma outra solução.

Figura 3.2 – Relação de dominação entre soluções.

O conjunto de soluções não-dominadas no espaço de projeto forma o Conjunto de Pareto, e a sua representação no espaço de funções objetivo formam a Fronteira de Pareto. Na Figura 3.3, considerando o exemplo da Figura 3.2, a continuidade presumida da Fronteira de Pareto (linha tracejada) é assumida por instância apenas, não havendo garantias.

Figura 3.3 – Fronteira de Pareto presumida.

3.2 Métodos clássicos para Otimização Multiobjetivo

Na solução de problemas de otimização multiobjetivo, como citado anteriormente, a maior dificuldade é a existência de objetivos conflitantes, onde nenhuma das soluções consegue otimizar simultaneamente todos os objetivos. Tradicionalmente, o problema multiobjetivo é resolvido transformando-o em um conjunto de problemas mono-objetivo por meio de métodos de escalarização e em seguida resolvendo-os com métodos do tipo gradiente.

No entanto, para transformar um problema multiobjetivo em um problema mono-objetivo, surge a necessidade de introduzir parâmetros adicionais que afetam diretamente os resultados obtidos, podendo mesmo levar a não obtenção completa da Fronteira de Pareto, em especial quando o problema apresenta regiões descontínuas ou não-convexas (COELLO, 2007). Porém, mesmo com essas desvantagens, os métodos clássicos têm sido muito empregados para resolução de problemas multiobjetivos em diversas áreas.

O mais utilizado e simples dos métodos tradicionais é o da Soma Ponderada. Este método consiste em transformar o problema multiobjetivo original em um problema escalar mono-objetivo. Para isso, as diferentes funções objetivo são combinadas linearmente e agregadas em uma única função, por meio do uso de pesos na forma:

Minimizar:
$$fesc = \sum_{i=1}^{NF} w_i \cdot F_i(X)$$
 (3.3)
Sujeito a $X \in X^*$

onde, " w_i " ≥ 0 é o peso que representa a importância relativa do objetivo " F_i " comparado com os outros. Estes pesos, geralmente, são normalizados, tal que:

$$\sum_{i=1}^{r} \boldsymbol{W}_{i} = 1 \tag{3.4}$$

Para obter as soluções de Pareto, deve-se resolver iterativamente o problema considerando diferentes vetores de pesos positivos. Neste caso, o decisor ou o

otimizador é o responsável pela definição dos pesos apropriados de acordo com a importância dos objetivos. Para que os pesos "*w*_i" reflitam a importância dos objetivos, as funções objetivo devem ser normalizadas expressando, de forma aproximada, as mesmas grandezas. Na prática, dependendo dos tipos de funções objetivo, é difícil conseguir o ajuste de suas magnitudes. Em geral é necessária a realização de algumas execuções do algoritmo para realizar esse ajuste.

A principal vantagem desse método é a simplicidade em sua implementação. Porém, apresenta como desvantagens a sensibilidade dos valores dos parâmetros nos resultados e a ineficácia em obter a Fronteira de Pareto para problemas que apresentem regiões não-convexas (COELLO, 2007).

Um outro método clássico bastante utilizado é o Método da Restrição-ε. Este método consiste em minimizar um único objetivo enquanto os outros são incorporados ao conjunto de restrições do problema, sendo restringidos pelos valores das componentes de um vetor ε. A idéia principal é transformar os objetivos em restrições, a menos de um, que corresponde ao de maior prioridade, sendo este o único considerado na função objetivo. Este método permite transformar o problema multiobjetivo em diversos problemas com um único objetivo.

A principal vantagem desse método é fornecer boa cobertura da Fronteira de Pareto através da escolha adequada do vetor ε , mesmo quando o espaço objetivo não é convexo. Porém, a principal desvantagem está na escolha adequada do vetor ε . Se escolhido de maneira inadequada, o problema a ser otimizado pode não apresentar solução viável.

3.3 Otimização com Algoritmos Evolutivos

A Computação Evolutiva é, juntamente com as Redes Neurais e os Sistemas de Lógica Nebulosa ("*Fuzzy*"), uma das áreas da Inteligência Computacional. A Figura 3.4 apresenta a ramificação da inteligência Computacional

(*Metaheuristics Network*). A Computação Evolutiva, também conhecida por Algoritmos Evolutivos, refere-se a um conjunto de algoritmos que foram desenvolvidos e inspirados na teoria da evolução natural de Darwin e dos conceitos de genética (EIBEN, 2003).

Figura 3.4 – Ramificação da Inteligência Artificial. Fonte: Adaptado de metaheuristics network (2011).

Os algoritmos de otimização que empregam processos evolutivos podem seguir diferentes linhas, que podem ser agrupadas em quatro grandes áreas (ALBEN, 2003): Algoritmos Genéticos (HOLLAND, 1975), Estratégias Evolutivas (RECHENBERG, 1973), Programação Evolutiva (FOGEL et al., 1966) e Programação Genética (KOZA, 1992).

Existem três aspectos da evolução biológica nos quais estes algoritmos, em geral, se baseiam: a seleção natural, a recombinação de material genético e a mutação (ZEBULUM, 1996; BÄCK, 1997; COELLO, 2007). Os aspectos essenciais de um algoritmo evolutivo são apresentados na Figura 3.5.

Figura 3.5 – Fluxograma básico de um Algoritmo Evolutivo.

Dentre os quatros tipos de Algoritmos Evolutivos, os mais usados são os Algoritmos Genéticos, cujos princípios básicos são descritos a seguir.

3.3.1 O Algoritmo Genético Simples

O primeiro passo de um Algoritmo Genético típico é a geração de uma população inicial "N_p" de cromossomos. Cada cromossomo pode ser representado por uma seqüência binária ou por parâmetros reais. Na representação binária, cada cromossomo codifica em bits uma possível solução do problema a ser resolvido. Através de mapeamento, pode-se trabalhar com números decimais e negativos, com a precisão desejada, mas finita.

Durante o processo evolutivo, esta população é avaliada e cada cromossomo recebe uma nota de aptidão, que indica a qualidade da solução que ele representa. Os cromossomos, também chamados de indivíduos, mais aptos têm mais probabilidade de serem selecionados. A seleção pode ser feita por diferentes métodos, todos visando a que os indivíduos mais aptos à sua função tenham mais chances de serem selecionados para o cruzamento ("*mating pool*"). Esta aptidão é representada por uma função de aptidão ("*fitness*"), que é
avaliada para cada solução. Os métodos de seleção mais utilizados são a seleção pela regra da roleta ou por torneio ("*tournament*").

Os indivíduos selecionados podem sofrer modificações através dos operadores de recombinação ("*crossover*") e de mutação, gerando descendentes para a próxima geração, que representa uma iteração do algoritmo.

A recombinação é considerada o principal operador de um Algoritmo Genético e consiste em criar descendentes de forma que algumas das características dos pais sejam trocadas entre si. Na representação binária a recombinação consiste em trocar partes da seqüência binária de cada duas soluções numa posição "corte" escolhida de forma randômica, podendo ser associada a uma probabilidade "P_c" de ocorrência de recombinação, geralmente, atribuída no intervalo de 0,5 a 1,0. A Figura 3.6 apresenta o operador de recombinação. A idéia por trás da recombinação é que se tenha a chance de criar melhores indivíduos, a partir de boas características dos pais.

Figura 3.6 – Operador genético – Recombinação ("crossover").

O operador de mutação é uma perturbação em cada descendente, preferencialmente local. A idéia do operador de mutação é criar uma variedade extra da população, mas sem destruir o progresso já obtido com a busca. Para a representação binária, por exemplo, um bit (gene) pode ser invertido de 1 para 0 ou vice-versa, segundo uma probabilidade "P_m". A probabilidade de mutação "P_m" é baixa, variando de 0,1% a 5%. A Figura 3.7 apresenta um exemplo da ação do operador de mutação.

Figura 3.7 – Operador genético – Mutação.

De modo geral, a combinação de seleção com recombinação é responsável pelo melhoramento da população, enquanto que a mutação tende a aumentar a diversidade da população, reduzindo a possibilidade que esta convirja prematuramente para um mínimo local.

Depois de realizada a seqüência das operações de seleção, recombinação e mutação, a nova população é avaliada, sendo as novas aptidões calculadas e reiniciado o processo, até atender a um critério de parada.

O desempenho numérico de um AG depende da escolha apropriada dos parâmetros "N_p", "P_c" e "P_m". Uma maneira para determinar o melhor valor para esses parâmetros é avaliar a influência de cada um deles no desempenho do algoritmo, mantendo-se os demais fixos. Isso pode se tornar um problema em si, se o custo computacional de avaliação da função objetivo for alto.

A Figura 3.8 apresenta os principais passos de um algoritmo genético simples.

Figura 3.8 - Fluxograma básico para um Algoritmo Genético

3.4 Computação Evolutiva Aplicada a Problemas de Otimização Multiobjetivo

Os Algoritmos Evolutivos representam uma classe de ferramentas muito versátil e robusta que vem sendo largamente empregada na solução de problemas de otimização. Esses algoritmos se distinguem dos métodos clássicos de otimização do tipo gradiente pelos seguintes aspectos:

- Empregam sempre uma população de indivíduos ou soluções. Diferentemente do uso do método de agregação das funções objetivo, esses algoritmos podem cobrir a Fronteira de Pareto em apenas uma execução;
- Podem operar com uma codificação das possíveis soluções e não com as soluções propriamente ditas;
- Não dependem de uma boa solução inicial para obter uma boa solução final;
- Não requerem informações adicionais (derivadas, por exemplo) da função a ser otimizada.
- Apresenta maior probabilidade de encontrar o mínimo global;

Deste modo, a busca por soluções pode-se dar sobre conjuntos não-convexos, com funções objetivo também não-convexas e não-diferenciáveis, e uso de variáveis contínuas, discretas e inteiras. Porém, do ponto de vista computacional, os Algoritmos Evolutivos são geralmente mais custosos do que métodos tradicionais por exigirem um maior número de avaliações da função objetivo.

A escolha do método a ser utilizado em problemas de otimização multiobjetivo depende das características do problema a ser otimizado, mas principalmente da relação entre a qualidade das soluções encontradas e o tempo necessário para encontrar tais soluções. Nesse sentido, para a maioria dos problemas reais essa relação é proibitiva, ou seja, são problemas para os quais é pouco provável que se consiga obter um algoritmo exato que possa ser executado em tempo razoável. Para esses casos, o uso de métodos heurísticos tem se tornado cada vez mais freqüentes, pois, quando bem aplicados, são capazes de fornecer boas soluções com tempo de execução computacional bastante razoável.

Um algoritmo é considerado um método heurístico quando não há conhecimentos matemáticos completos sobre seu comportamento, ou seja, quando, sem oferecer garantias, o algoritmo objetiva resolver problemas complexos utilizando uma quantidade não muito grande de recursos, especialmente no que diz respeito ao consumo de tempo, para encontrar soluções de boa qualidade (SUCUPIRA, 2004).

Os métodos heurísticos nem sempre encontram uma solução ótima, uma vez que, partindo de uma solução viável, baseiam-se em sucessivas aproximações direcionadas para um ponto ou a um conjunto de pontos ótimos. Assim, estes métodos costumam encontrar as melhores soluções possíveis para problemas, podendo, entretanto, não serem soluções exatas ou perfeitas.

As heurísticas baseadas em Algoritmos Genéticos têm sido utilizadas com

44

maior frequencia nos últimos anos, em especial para soluções de problemas multiobjetivos. Vários pesquisadores têm modificado as idéias iniciais dos algoritmos genéticos propostas por Holland (GOLDBERG, 1989) para tratamento de problemas multiobjetivos complexos reais (COELLO et al., 2002), entre elas, destacam-se o "*Multiobjective Genetic Algorithm*" – MOGA (FONSECA; FLEMING, 1993), o "*Non-Dominated Sorting Genetic Algorithm*" – NSGA (SRINIVAS; DEB, 1994), o "*Niched Pareto Genetic Algorithm*" – NPGA (HORN et al., 1994), o "*Strength Pareto genetic Algorithm*" – SPEA (ZITZLER; THIELE 1999), "*Nondominated Sorting Genetic Algorithm*" – NSGA II (DEB et al., 2000), o "*Multiobjective Generalized Extremal Optimization*" – M-GEO (GALSKI et al., 2005), entre outros. A seguir são apresentadas as principais características desses algoritmos multiobjetivos.

3.4.1 Vector Evaluated Genetic Algorithm – VEGA

David Schaffer é considerado o pioneiro na implementação de algoritmos evolutivos para solução de problemas multiobjetivo (COELLO, 2006). Schaffer desenvolveu, na primeira metade dos anos 80, o algoritmo conhecido por *"Vector Evaluated Genetic Algorithms"* ou simplesmente VEGA (SCHAFFER, 1985).

O algoritmo VEGA, consiste basicamente de um Algoritmo Genético Simples (SGA) com melhorias no mecanismo de seleção. A cada geração, um número predefinido de indivíduos (sub-população) é gerado separadamente para cada função objetivo, dando a natureza multiobjetivo do problema. Dessa forma, para um problema com "k" objetivos e considerando uma população de "N" indivíduos, N/k sub-populações serão formadas. Os indivíduos das sub-populações são então randomicamente sorteados para a geração da nova população de "N" indivíduos o qual será aplicado nas etapas de recombinação e mutação.

Um dos problemas do algoritmo VEGA é a baixa diversidade de soluções na Fronteira de Pareto (não-dominadas). Este problema surge porque neste método, a cada geração, selecionam-se os indivíduos que se destacam em uma dimensão, sem olhar para outras dimensões. Isso pode levar a que a maioria das soluções não-dominadas encontradas se concentrem próximo as extremidades da fronteira de Pareto.

3.4.2 Multi-Objective Optimization Genetic Algorithm – MOGA

O Algoritmo MOGA (FONSECA; FLEMING, 1993) é o primeiro Algoritmo Genético Multiobjetivo que usa explicitamenrte o conceito de não-dominância para atribuição da adaptabilidade dos indivíduos da população e ao mesmo tempo mantém a diversidade das soluções não-dominadas através do uso do compartilhamento de adaptação (*"fitness sharing*"). O algoritmo MOGA se diferencia dos AGs clássicos pela forma com que atribui o valor de aptidão às soluções de uma população. A cada solução é associado um valor de ordenação (*"ranking*") que é igual ao número de soluções que a domina acrescido de mais um, conforme apresentado na Figura 3.9 (f₁ e f₂ são funções a serem minimizadas). Os demais parâmetros, comuns nos AGs, tais como tamanho da população, probabilidade de recombinação e de mutação também estão presentes no MOGA.

Figura 3.9 – Exemplo de Contagem de Nichos.

3.4.3 Nondominated Sorting Genetic Algorithm – NSGA

Este algoritmo foi proposto por Srinivas e Deb (1994). A abordagem é baseada em vários níveis de classificação dos indivíduos como sugerido por Goldberg (1989). O NSGA é um método similar ao MOGA. Suas principais diferenças estão na maneira de calcular a aptidão de cada indivíduo e na estratégia de nicho. O NSGA utiliza um procedimento de seleção baseado no ordenamento para atribuir valores às soluções não-dominadas em conjunto com um método para a criação de nichos para manter a diversidade da população (*"fitness sharing"*). Os operadores de recombinação e mutação usados são os mesmos usados nos algoritmos genéticos convencionais, diferenciando apenas no modo com que o operador de seleção é empregado.

Antes do procedimento de seleção ser aplicado, os indivíduos da população são classificados com base no conceito de ordenamento de Pareto, conforme apresentado na Figura 3.10. Os indivíduos mais eficientes presentes na população são classificados com base no nível de não-dominância. As soluções não-dominadas da população recebem um valor de rank=1.

Desconsiderando temporariamente estas soluções, determinam-se as novas soluções não-dominadas da população restante e atribuiu a elas o rank=2. Este procedimento continua até que toda a população seja classificada. As melhores soluções possuirão menor rank.

Figura 3.10 – Exemplo de ordenamento de Pareto.

Para manter a diversidade na população as soluções não-dominadas compartilham os seus valores de aptidão de acordo com a distância entre elas, conforme mostrado na Figura 3.11(a). O valor da aptidão de cada indivíduo é dividido pelo contador de nichos que é proporcional ao número de vizinhos ao seu redor.

A reprodução da população é efetuada utilizando-se a aptidão compartilhada, ou seja, como o primeiro nível de soluções não-dominadas possui as mais altas aptidões, um maior número de cópias dos seus indivíduos será realizado e levará a busca para a Fronteira de Pareto.

Embora o NSGA possa resolver problemas com qualquer número de funções objetivo, computacionalmente não apresenta boa eficiência pois o ordenamento de Pareto tem que ser repetido inúmeras vezes, além da necessidade do usuário definir a priori o parâmetro σ_{share} , responsável pela criação dos nichos.

Estudos comparativos realizados por Coello (COELLO, 1996) mostraram que o desempenho do NSGA é inferior ao algoritmo MOGA além de ser bastante sensível à divisão da função adaptação.

3.4.4 Niched-Pareto Genetic Algorithm – NPGA

No algoritmo NPGA (HORN et. al., 1994) a seleção é realizada por torneio baseado no conceito de dominância. Tipicamente dois individuos são escolhidos aleatoriamente e comparados a um subconjunto da população cujo tamanho é definido pelo parâmetro T_{dom}. O individuo não dominado pelo subconjunto é escolhido para a reprodução. Quando ambos os competidores são dominados ou não-dominados, a escolha é feita baseando-se na densidade local (*"fitness sharing"*). Neste caso, um contador de nicho é criado para cada indivíduo na população. O contador é baseado no número de soluções na população com uma certa distância do indivíduo (Figura 3.11). Assim, a solução que apresentar o menor contador de nicho é selecionada.

Uma das vantagens desse algoritmo é sua rapidez uma vez que a seleção da Fronteira de Pareto não é aplicada à população inteira e não há necessidade de atribuir valores de adaptação para nenhum indivíduo. Porém, apresenta grande sensibilidade ao parâmetro que define o tamanho da subpopulação (T_{dom}). A escolha desse parâmetro determina o desempenho do algoritmo.

3.4.5 Random Weighted Genetic Algorithm – RWGA

O Algoritmo RWGA proposto por Murata e Ishibuchi (MURATA; ISHIBUCHI, 1996) utiliza o método de agregação de funções objetivo com o uso de diferentes pesos. Os pesos são alterados freqüentemente durante a execução do algoritmo com o objetivo de permitir que as direções de busca sejam alteradas para varrer todo o espaço de soluções. Para executar esta tarefa, números aleatórios são gerados para construir os pesos das funções e, em seguida, as soluções que são encontradas através de mudança de direção são coletadas em um conjunto para construir o conjunto Pareto-ótimo. Esse algoritmo apresenta boa eficiência e de fácil implementação porém apresenta dificuldades na busca por soluções em funções objetivo não-convexas (KONAK, 2006).

3.4.6 Strength Pareto Evolutionary Algorithm – SPEA

O algoritmo SPEA foi proposto por Zitzler e Thiele (ZITZLER; THIELE, 1999) com o objetivo de introduzir o elitismo nos algoritmos evolutivos multiobjetivos. Os parâmetros, comuns nos algoritmos genéticos, tais como tamanho da população, probabilidade de recombinação e de mutação também estão presentes no SPEA.

O algoritmo faz uso de dois conjuntos de soluções. Um deles é formado por uma população de soluções dominadas e o segundo formado por soluções não-dominadas, denominado como Conjunto Externo. O procedimento do algoritmo é iniciado com a geração de uma população aleatória de tamanho "N" e um conjunto externo vazio. As melhores soluções (soluções não-dominadas) de cada geração são armazenadas no conjunto externo. A adaptabilidade de uma dada solução dominada "i" é atribuída em função de quantas soluções do conjunto externo a dominam. Já a adaptabilidade de uma solução "j" do conjunto externo é atribuída em função do número de soluções da população que ela domina.

A escolha dos pais para a aplicação do operador de recombinação é feita

usando um processo de seleção habitualmente encontrados nos AGs.

A eficácia do algoritmo depende do tamanho do conjunto externo. Esse é um dos problemas apresentado pelo SPEA pois, a medida que o processo evolui, o número de soluções contidas no conjunto externo torna-se grande, o que pode reduzir a pressão de seleção, retardando a busca. Para restringir o aumento exagerado de soluções não-dominadas no conjunto externo, o algoritmo emprega um método de "*clustering*" para reduzir o número de soluções não-dominadas armazenadas no conjunto externo sem perder as características da Fronteira de Pareto.

Um estudo realizado por Zitzler (ZITZLER et al., 2000) comparou o desempenho de alguns dos principais algoritmos genéticos multiobjetivos, entre eles, VEGA, MOGA, NPGA, NSGA e SPEA. Foram utilizadas algumas métricas para comparar as soluções encontradas pelos algoritmos, considerando a distância entre a Fronteira de Pareto ideal e a Fronteira encontrada e a distribuição das soluções na Fronteira. O SPEA foi considerado o mais eficaz deles, seguido pelo NSGA e VEGA.

3.4.7 Nondominated Sorting Genetic Algorithm – NSGA-II

O algoritmo NSGA-II foi proposto por Deb (DEB et al., 2001), como uma versão melhorada do NSGA. O NSGA-II, leva em conta a necessidade de diminuir a complexidade computacional na classificação das soluções não-dominadas e introdução de elitismo, além de passar a avaliar a densidade de soluções no espaço das funções objetivo e não na de variáveis de projeto através do uso do conceito de distância de aglomeração ("*crowding distance*"), conforme mostrado na Figura 3.11(b). A principal vantagem do uso da distância de aglomeração para calcular a densidade populacional ao redor de uma solução é eliminar a necessidade de definição de um parâmetro do tipo σ_{share} .

Uma das características do NSGA-II é não fazer uso de uma memória externa como em outros algoritmos multiobjetivos. Devido a seus mecanismos

inteligentes, o NSGA-II é considerado muito mais eficiente do que seu antecessor e seu desempenho o tornou muito popular nos últimos anos. Detalhes do funcionamento do NSGA-II e do conceito de Distância de Aglomeração são apresentados no Capítulo 4.

Figura 3.11 – Representação gráfica da técnica "*Fitness Sharing*" e "*Crowding Distance*". Fonte: KONAK et al. (2006)

3.4.8 Pareto Archived Evolution Strategy – PAES

O algoritmo PAES proposto por Knowles e Corne (KNOWLES; CORNE, 1999), consiste de uma estratégia de evolução (1+1) em combinação com um arquivo externo de tamanho fixo que armazena as soluções não-dominadas encontradas previamente. O arquivo externo é o mecanismo elitista adotado no algoritmo, sendo utilizado como um conjunto de referência no qual cada individuo descendente (Filho) será comparado. A estratégia evolutiva adotada pelo algoritmo gera, a partir de um único Pai, um único Filho.

O algoritmo inicia com a adoção de uma solução aleatória, chamada de Pai, dentro do intervalo de variáveis de projeto, e armazena-o no arquivo externo. Em seguida é gerado um descendente (Filho) através do método de estratégias evolutivas. O Pai é comparado com o Filho e se o Pai for o vencedor, o Filho é descartado e um novo descendente é gerado. Porém, se o Filho for o vencedor, este é comparado com as soluções do arquivo externo e as soluções dominadas são removidas. Se o Filho não for dominado, ele é então aceito como Pai para a próxima geração e uma cópia é adicionado ao arquivo externo.

No caso do Filho não dominar ou ser dominado por alguma solução do arquivo externo e este não estiver cheio, Pai e Filho são verificados e se o Filho residir na região menos lotada ("*crowded*"), ele é então aceito como Pai para a próxima geração e uma cópia é adicionado ao arquivo.

A idéia básica é manter um conjunto externo com as soluções não-dominadas e para manter a diversidade da população no arquivo externo, utiliza-se o critério de preferência por soluções ocupando regiões menos densa.

3.4.9 Multiobjective Generalized Extremal Optimization – M-GEO

O algoritmo M-GEO (GALSKI, 2006) é a primeira versão multiobjetivo da Otimização Extrema Generalizada (GEO) (SOUSA et al., 2003). O algoritmo M-GEO é de fácil implementação, não faz uso de nenhum tipo de agregação das funções objetivo e possui um único parâmetro livre que pode ser ajustado para dar melhor desempenho a uma dada aplicação. O M-GEO tem sido aplicado com sucesso em vários problemas reais de projeto ótimo e tem se mostrado bastante competitivo quando comparado a outros métodos estocásticos. Os detalhes da implementação do algoritmo M-GEO são apresentados no Capítulo 4.

4 MULTIOBJECTIVE GENERALIZED EXTREMAL OPTIMIZATION - M-GEO

Neste Capítulo é apresentado uma descrição sucinta da teoria da criticalidade auto-organizada (SOC – Self-Organized Criticality) e do modelo simplificado de um ecossistema proposto por Bak e Sneppen (1993) para demonstrar que tais sistemas possuem SOC. Em seguida é apresentado o funcionamento do algoritmo GEO (Otimização Extrema Generalizada) e de sua versão multiobjetivo (M-GEO). Finalmente, são apresentadas as propostas de aprimoramento do algoritmo M-GEO e os resultados obtidos na aplicação a um conjunto de funções teste.

4.1 SOC e o método da Otimização Extrema

A teoria da Criticalidade Auto-Organizada (SOC), proposta inicialmente para explicar a origem do ruído 1/f em sistemas físicos, tem sido largamente usada nos últimos anos para explicar o comportamento de alguns fenômenos naturais e sistemas complexos, tais como a evolução das espécies, frequencia de terremotos, mercado financeiro, entre outros (BAK, 1996).

A teoria de SOC propõe que sistemas complexos que possuem muitos elementos que interagem entre si, embora precário, permaneçam em equilíbrio. Porém, essa interação evolui naturalmente para um estado crítico onde uma pequena mudança pode provocar reações totalmente imprevisíveis (avalanches) que pode atingir qualquer um dos elementos que fazem parte do sistema. A distribuição de probabilidade dos tamanhos "S" dessas avalanches obedece a uma lei de potência descrita por:

$$P(s) \sim S^{-t} \tag{2.1}$$

Onde, P(s) é o número de avalanches de um dado tamanho "S" e o expoente "-t" é a sua inclinação. A probabilidade de ocorrer pequenas avalanches é grande, porém a probabilidade de que avalanches tão grandes quanto o sistema ocorra não é desprezível.

Bak e Sneppen (BAK; SNEPPEN, 1993) propuseram um modelo simplificado

53

de um ecossistema para mostrar que a evolução das espécies não se deu de forma gradual, mas por meio de saltos. No modelo, as espécies são colocadas lado a lado e possuem uma relação de vizinhança, conforme apresentado na Figura 4.1

Figura 4.1 – Modelo de ecossistema proposto por Bak e Sneppen, 1993.

No modelo proposto, o ecossistema é formado por "n" espécies onde " e_n " é vizinho de " e_{n-1} " e " e_1 ", " e_2 " é vizinho de " e_1 " e " e_3 " e assim sucessivamente. Para cada espécie é atribuído aleatoriamente e com distribuição uniforme, um valor de aptidão no intervalo [0,1]. A espécie com pior valor de aptidão é considerada a menos adaptada e o processo de evolução força-a a sofrer uma mutação, ou seja, um novo índice de aptidão é atribuído a essa espécie.

A mudança no índice de aptidão da espécie menos adaptada força as espécies vizinhas a sofrer mutação, mesmo que seus índices de aptidão sejam altos. A mutação é feita atribuindo, de forma aleatória, novos valores de aptidão para essas espécies. Esse processo pode ocasionar a evolução ou a extinção de qualquer uma das espécies. Após algumas iterações, a população evolui para um estado crítico onde todas as espécies do ecossistema apresentam um índice de adaptabilidade acima de um valor crítico. Eventualmente o índice de aptidão para algumas espécies pode cair para valores abaixo do valor crítico, em forma de avalanches (perturbações) que podem atingir todas as espécies. Como as espécies que estão abaixo do valor crítico têm mais probabilidade de sofrer mutação, o sistema tende sempre a voltar para o estado crítico e assim avalanches de menor tamanho ocorrem com mais frequencia do que grandes avalanches.

A utilização do modelo proposto por Bak e Sneppen em um método de otimização, no qual a dinâmica de busca apresente características de SOC, possibilitaria o aparecimento de soluções ótimas rapidamente,

54

sistematicamente modificando as espécies menos adaptadas da população e valendo-se das avalanches para escapar de mínimos locais (GALSKI, 2006).

Em 2001, Boettcher e Percus (BOETTCHER; PERCUS, 2001), inspirados no modelo simplificado de evolução proposto por Bak e Sneppen, propuseram uma meta-heurística para uso em problemas de otimização combinatória denominada de Otimização Extrema (EO – "*Extremal Optimization*").

O método da EO foi criado com o intuito de ser uma meta-heurística que pudesse ser aplicada a uma grande classe de problemas. No EO a população é formada pelas variáveis de projeto e para cada uma delas é atribuído um índice de adaptabilidade. Porém, da maneira como o método é implementado, pode ser específico a um determinado problema e uma busca pelo ótimo pode se mostrar ambígua, ou mesmo impossível (BOETTCHER; PERCUS, 2001).

Para resolver esse problema, SOUSA (2002) propôs um algoritmo que generaliza o método da otimização extrema, denominado de Otimização Extrema Generalizada. Esse método possibilita a implementação do EO independente do tipo de problema a ser atacado.

Diferente de como é representado um indivíduo em um algoritmo evolutivo convencional, onde cada um representa uma solução no espaço de projeto, no GEO canônico a população de espécies é formada por uma seqüência (*"string"*) de bits, onde cada bit representa uma espécie. As variáveis de projeto são codificadas pela seqüência de bits, que é similar a um cromossomo binário em um GA canônico.

4.2 Método da Otimização Extrema Generalizada - GEO

O método GEO diferencia-se do método EO pelo fato de que sua implementação é independente do tipo de problema abordado e variáveis associadas. É um algoritmo voltado preferencialmente para atacar problemas de otimização com um espaço de busca complexo, não convexo, disjunto, com

múltiplos mínimos e não linearidade na função-objetivo e nas restrições. Pode ser aplicado a problemas com qualquer tipo de variável, sejam elas contínuas, inteiras ou discretas (SOUSA et al., 2003).

O algoritmo GEO é de fácil implementação e possui apenas um parâmetro livre (" τ ") para ajustar, que pode ser facilmente configurado para dar melhor desempenho a uma dada aplicação. Esta é uma vantagem a *priori* em relação aos Algoritmos Genéticos ou o Recozimento Simulado (SOUSA et al, 2005).

O GEO tem sido aplicado com sucesso em vários problemas reais de projeto ótimo (SOUSA et al, 2003; SOUSA et al, 2004b; GALSKI et al, 2004; LOPES, 2008; CENTENO, 2008; CASSOL, 2009; DUTRA et al., 2010) e mostrou ser bastante competitivo se comparado a outros métodos estocásticos (SOUSA, 2002; SOUSA et. al, 2003; ABREU, 2007). GALSKI (2006) apresentou um estudo detalhado da forma de operação do GEO e, além de propor melhorias no algoritmo original, propôs versões paralelizada e híbrida para o algoritmo.

Na sua versão canônica, o algoritmo GEO representa as variáveis de projeto por uma única seqüência de bits que representa L espécies. Cada espécie (bit) recebe um índice de adaptação. As variáveis de projeto são codificadas na seqüência de bits, que podem assumir o valor 0 ou 1, similar a um cromossomo binário em um Algoritmo Genético, conforme apresentado na Figura 4.2.

Porém, diferente de um Algoritmo Genético, a seqüência de bits não representa o cromossomo de um indivíduo, mas cada bit é interpretado como uma espécie diferente. Na Figura 4.2, os seis primeiros bits codificam a variável de projeto X_1 , os seis bits seguintes codificam a variável X_2 e assim por diante, até os últimos seis bits da seqüência, que codificam X_N .

Cada uma destas espécies possui uma adaptabilidade, a qual é proporcional a variação no valor da função objetivo quando o bit que a representa é modificado.

56

Figura 4.2 – Variáveis de projeto codificada em uma seqüência de bits onde cada variável é representada por 6 bits. Fonte: SOUSA (2002).

Em um problema de minimização, o bit que, quando alterado, levar a um valor de função objetivo menor que o produzido pela modificação de um outro bit, está menos adaptado que este. Esta comparação é feita entre todos os bits da população e os mesmos são ordenados do menos adaptado ao mais adaptado. Em uma população de L bits, cada bit recebe um índice "k", onde k=1 representa o bit menos adaptado e k=L representa o bit mais adaptado.

Em seguida um bit com índice "k" é sorteado aleatoriamente, com distribuição uniforme, para sofrer mutação com uma probabilidade P(k) α k^{- τ}, onde " τ " é um parâmetro ajustável real não negativo. Se o bit sorteado sofrer mutação (mudar de 0 para 1 ou vice-versa), um novo conjunto de espécies para a próxima geração é gerado, se não, um novo bit é sorteado até que haja uma mutação. Este processo é repetido até que um critério de parada seja satisfeito. A melhor configuração de bits durante a busca é guardada e retorna como solução no final do processo. A Figura 4.3 apresenta o fluxograma para o algoritmo GEO.

O valor de " τ " influencia no modo como a busca de soluções viáveis é feito. Se " τ " $\rightarrow \infty$ apenas o primeiro bit ordenado será mutado em cada iteração do GEO, e se " τ " $\rightarrow 0$, qualquer bit escolhido (independente de ter uma boa posição no ordenamento) será mutado. Para muitos problemas abordados com GEO, o valor de " τ " que apresenta os melhores resultados geralmente situa-se no intervalo de 1 a 5 (GALSKI, 2006).

As restrições de igualdade e desigualdade podem ser tratadas simplesmente

atribuindo um alto índice de adaptação aos bits que, ao se modificarem, levem a soluções inviáveis.

Figura 4.3 – Fluxograma do Algoritmo GEO.

Lopes (2008) propôs as versões GEOvar e GEOreal. Nessas versões, o algoritmo tem o mesmo mecanismo de busca do GEO, porém ao invés de usar bits para codificar as variáveis, os algoritmos trabalham diretamente com as variáveis reais. Os resultados obtidos com as implementações apresentaram melhorias significativas de desempenho quando aplicados nas soluções de funções teste.

4.3 Otimização Extrema Generalizada Multiobjetivo – M-GEO

Em 2006, Galski (2006) propôs o algoritmo M-GEO. Este algoritmo foi desenvolvido com o intuito de obter o conjunto de soluções não-dominadas de um problema com múltiplos objetivos. O M-GEO é a primeira versão multiobjetivo da Otimização Extrema Generalizada. O algoritmo M-GEO é de fácil implementação, não faz uso de nenhum tipo de agregação das funções objetivo, pode ser usado em problemas com ou sem restrições, com espaço de

projeto com não-convexidade ou até mesmo disjunto, sendo capaz de abordar problemas com qualquer combinação de variáveis continuas, discretas ou inteirais. Além disso, não utiliza diretamente o conceito de não-dominância como critério para guiar a busca, como descrito nos algoritmos NSGA-II (DEB et al., 2000), NPGA (HORN et al., 1994), MOGA (FONSECA; FLEMING, 1993), e SPEA (ZITZLER; THIELE 1999). A estratégia adotada é similar ao algoritmo VEGA (SCHAFFER, 1985).

A estratégia multiobjetivo do M-GEO é a de um torneio n-para-um, onde, a cada iteração do algoritmo, todas as funções objetivo competem pelo privilégio de serem usadas como sendo a função de atribuição de adaptação e apenas uma é escolhida. A escolha é totalmente aleatória (distribuição uniforme), não havendo nenhum mecanismo de elitismo e portanto, qualquer seqüência de escolha é possível, mesmo aquelas em que apenas uma função objetivo é usada como a função de atribuição de adaptação durante toda a busca.

Esta aleatoriedade permite ao M-GEO acessar a totalidade da Fronteira de Pareto, sendo que a eficiência esperada do algoritmo repousa na pressão de seleção imposta pelo parâmetro "τ" sobre todas as funções objetivo, a qual força os movimentos do algoritmo no espaço de objetivos na direção da Fronteira de Pareto. Além disso, o M-GEO utiliza um esquema de reinicialização com o objetivo de aumentar a possibilidade de encontrar soluções sobre toda a Fronteira de Pareto. Os passos para implementação do algoritmo M-GEO são descritos a seguir e um fluxograma do mesmo apresentado na Figura 4.4:

- Inicialize aleatoriamente uma população (seqüência) de L espécies que codificam N variáveis de projeto (vetor X)
- Realize a mutação de todos os L bits da seqüência, um de cada vez, gerando L vetores X_b, onde b∈ {1, 2,, L} e calcule [F₁(X_b), F₂(X_b),, F_N F_{OBJ} (X_b)] L vezes. A aproximação da Fronteira de Pareto é verificada e atualizada, para conter apenas as soluções não-dominadas, e mantida em um arquivo separado.

- Escolha aleatoriamente uma função objetivo entre todas as N_{FOBJ} e denomine como lc.
- Associe um valor de aptidão para cada bit b∈{1, 2,, L} e atribua um valor de adaptação proporcional ao ganho ou perda que a Ic-ésima F(X), F_{Ic}(X), tem se o bit comuta, comparando ao melhor F_{Ic}(X) encontrado até aqui.
- 5. Ordene as espécies (bit) de 1 a L, de acordo com seu valor de aptidão, gerando um conjunto de L pares (b,k), onde b é a posição do bit na seqüência e k é sua ordem. A primeira posição (k=1) da ordenação indica a espécie menos adaptada.
- 6. Escolha com probabilidade uniforme uma espécie para mutar. Gere um número aleatório RAN com distribuição uniforme no intervalo de [0,1]. Se P(k) α k^{-τ}, com k∈{1, 2, ..., L} é igual ou maior que RAN, a espécie é confirmada para sofrer mutação, senão uma nova espécie é escolhida. O valor de "τ" influencia no modo como a busca de soluções viáveis é feito. Se "τ" for muito grande, apenas o primeiro bit ordenado será mutado em cada iteração do algoritmo, e se "τ" for igual a zero, qualquer bit escolhido será mutado.
- Verifique se o critério de parada foi atingido. Se afirmativo, siga para o Passo 9.
- Verifique se a população deve ser reinicializada. Em caso afirmativo, o algoritmo retorna ao Passo 1 e uma nova população é gerada aleatoriamente, mantendo-se as soluções da Fronteira de Pareto, caso contrário, o algoritmo retorna ao Passo 2.
- 9. Retorne o Conjunto de Pareto e a Fronteira de Pareto.

Para entendimento do mecanismo pelo qual o M-GEO consegue capturar uma boa aproximação para a totalidade da Fronteira de Pareto, a seguir é transcrito o exemplo apresentado por Galski (2006) para um problema de minimização biobjetivo:

A Figura 4.5 ilustra os pontos percorridos durante três buscas. A primeira busca

(letra A) que corresponde à situação extrema onde o M-GEO sorteou sempre a F_1 para calcular os valores de aptidão. Com isso, o algoritmo tende a convergir para a extremidade da Fronteira de Pareto onde a F_1 é otimizada ao máximo. A segunda busca, (letra B), análogo à primeira busca, porém sorteando sempre a F_2 para calcular os valores de aptidão, o algoritmo tende a convergir para a extremidade da Fronteira de Pareto onde a F_2 é otimizada ao máximo. A terceira busca, (letra C), corresponde a uma busca qualquer, onde uma seqüência arbitrária de alternâncias entre F_1 e F_2 ocorreu. Nesse caso, a cada iteração do M-GEO, o algoritmo tende para o extremo em F_1 ou para o extremo em F_2 , em função de qual função objetivo (F_1 ou F_2) foi sorteada na iteração atual.

Figura 4.4 – Fluxograma do Algoritmo M-GEO.

O resultado esperado ao longo de várias iterações é um movimento aleatório em direção à Fronteira de Pareto, com o M-GEO convergindo para um ponto qualquer da mesma.

Todas as soluções não-dominadas são armazenadas ao longo da busca. Ao final, o algoritmo fornece o conjunto de soluções de Pareto.

Figura 4.5 – Exemplo de buscas com o M-GEO. Fonte: GALSKI (2006)

4.4 Tentativas de aprimoramento do Algoritmo M-GEO

Embora o M-GEO tenha sido aplicado com sucesso em vários problemas reais de projeto ótimo (GALSKI et al., 2005; GALSKI, 2006; LOPES, 2008; YANO, 2011; CUCO et al., 2011) e tenha se mostrado bastante competitivo quando comparado a outros métodos estocásticos, neste trabalho optou-se por avaliar o seu desempenho com a implementação da técnica de distância de aglomeração ("*Crownding Distance*") proposto por Deb (DEB, 2000).

O objetivo de implementar e avaliar essa técnica no algoritmo M-GEO é promover uma maior diversidade da população para encontrar um conjunto de soluções dominantes com pontos bem distribuídos ao longo de toda a Fronteira de Pareto. Com isso, evita-se que as soluções convirjam para pequenas regiões do conjunto Pareto-ótimo (DEB, 2000; ABIDO, 2003).

4.4.1 Distância de aglomeração (crowding distance)

Como proposto no algoritmo NSGA-II (Deb, 2000), com a técnica de distância de aglomeração ("*Crowding Distance*"), novos indivíduos substituem indivíduos similares, pertencentes a um subconjunto amostrado da população. A distância de aglomeração é um operador de diversidade que serve para garantir que as soluções se apresentem espalhadas ao longo da Fronteira de Pareto ao invés de se apresentarem concentradas em pontos próximos entre si. Esse operador de diversidade serve também como critério de ordenação dentro de uma mesma Fronteira (que será referenciada por "*front*"). Quanto maior o valor da distância de aglomeração, melhor a classificação do indivíduo dentro do *front*.

No NSGA-II, a criação da população ("N") para a próxima geração consiste em escolher os melhores indivíduos localizados nos primeiros "fronts" obtidos pelos conjuntos de Pais ("P") e Filhos ("F"). O conjunto de Filhos é obtido a partir do conjunto de Pais através do processo de seleção, recombinação e mutação. Da união dos conjuntos de Pais e Filhos são obtidos os diversos "fronts" de acordo com o grau de dominância associado a cada indivíduo ("rank"). Os melhores indivíduos são classificados no primeiro "front" e os piores são classificados no último. Isto permite uma verificação global de não-dominância entre esses indivíduos. Os indivíduos dos melhores "fronts" são automaticamente selecionados. Quando o último "front" necessário para completar a população "N" é selecionado podem existir soluções neste "front" que ultrapassem o tamanho da população final, sendo portanto, eliminados. Essa eliminação é feita com a eliminação dos indivíduos com menor distância de aglomeração. Finalizado o processo, tem-se a nova população "N" de indivíduos.

Para um dado indivíduo "x" (ver Figura 3.11), esta distância é definida pela pela expressão cd1(x) + cd2(x). Quanto maior esse valor, maior a probabilidade do indivíduo "x" ser selecionado. A idéia é que a partir de um ponto central o operador de diversidade possa manter os pontos extremos e priorizar os pontos mais distantes durante o processo de seleção além de espalhar os resultados ao longo da Fronteira de Pareto.

63

Para o cálculo da medida da distância de aglomeração as soluções devem ser ordenadas de acordo com o valor de cada objetivo em ordem crescente onde os pontos das extremidades são atribuídos valores significamente elevados. Para as demais soluções pertencentes ao *"front*", o valor da distância corresponde a diferença absoluta e normalizada dos valores de duas soluções adjacentes. A Figura 4.6 esquematiza os procedimentos do NSGA-II.

Para o aprimoramento do M-GEO canônico, proposto neste trabalho, a técnica de distância de aglomeração foi usada para selecionar o bit a ser mutado. Nesse caso, o processo pode ser dividido em duas etapas a seguir.

A primeira, semelhante ao aplicado no algoritmo NSGA-II, consiste em avaliar todas as soluções, comparando-as entre si a fim de classificá-las ("*rank*") de acordo com o grau de dominância. Isso ocorre após todos os bits serem mutados e calculadas as aptidões que a mudança do bit proporcionou na função objetivo. Nesse caso, o bit menos adaptado estará sempre presente no primeiro *"front"* e o mais adaptado será classificado no último *"front"*.

Figura 4.6 – Esquemático para obter a próxima geração no algoritmo NSGA-II.

Com todas as soluções classificadas em seus respectivos *"fronts"*, de acordo com o grau de dominância, a segunda etapa consiste em determinar a distância de aglomeração (d_{crowding}) para cada uma das soluções presentes nos diversos *"fronts"*.

Uma vez determinada as distâncias de aglomeração, o passo seguinte é determinar qual bit será selecionado para sofrer a mutação. Para as duas propostas de aprimoramento, o bit escolhido será aquele que gerou a solução com maior distância de aglomeração presente em um *"front"* pré-definido.

A diferença entre o primeiro aprimoramento e o segundo é a escolha de qual *"front"* o bit será escolhido. Para o primeiro aprimoramento, o bit a sofrer a mutação será aquele que gerou a solução presente no primeiro *"front"* enquanto para a segunda proposta de aprimoramento o *"front"* é escolhido de forma aleatória com uma distribuição exponencial. A Figura 4.7 apresenta esquematicamente o processo para determinar qual o bit será mutado.

Figura 4.7 – Esquemático para determinar o bit a ser mutado no algoritmo M-GEO com a implementação do aprimoramento.

Para a implementação da proposta de aprimoramento, uma modificação importante realizada no M-GEO canônico foi a eliminação da escolha aleatória de uma das funções objetivo usada para o cálculo dos valores de aptidão.

4.4.2 Verificação do desempenho das propostas para melhoramento do M-GEO

Para a avaliação das propostas de aprimoramento foram escolhidas três funções testes bastante utilizada para verificar o desempenho de algoritmos de otimização multiobjetivo (SRINIVAS; DEB, 1994; TANAKA, 1995, DEB, 2000), conforme apresentadas na Tabela 4.1.

Os algoritmos M-GEO e suas sugestões para aprimoramentos foram implementados em linguagem Fortran®. Para a avaliação do desempenho dos aprimoramentos propostos, os resultados obtidos com o algoritmo M-GEO canônico foram comparados aos obtidos por Galski (2006).

Função	Mínimo de F(X)	NFobj	Ν	Restrições
FTM1	$F(X) = \begin{bmatrix} e^{-X1} + 1, 4e^{-X^{2}1} \\ e^{X1} + 1, 4e^{-X^{2}1} \end{bmatrix}$	2	1	$-10 \le X_1 \le 10$
FTM2	$F(X) = \begin{bmatrix} f_1 = \begin{cases} -X_1, se X_1 \le 1\\ -2 + X_1, se 1 < X_1 \le 3\\ 4 - X_1, se 3 < X_1 \le 4\\ -4 + X_1, se X_1 > 4 \end{bmatrix} \\ f_2 = (X_1 - 2)^2 \end{bmatrix}$	2	1	-10 ≤ X ₁ ≤ 10
FTM3	$f_1(x) = x_1$ $f_2(x) = x_2$	2	2	$C1(x) = -x_1^2 - x_2^2 + 1 + 0,1\cos\left\{16\arctan\left(\frac{x_1}{x_2}\right)\right\} \le 0$ $C2(x) = (x_1 - 0,5)^2 + (x_2 - 0,5)^2 \le 0,5$ $0 \le x_1 \le \pi$ $0 \le x_2 \le \pi$

Tabela 4.1 – Funções teste para minimização multiobjetivo.

4.4.3 Aprimoramento 1

Neste aprimoramento a idéia é avaliar, a cada interação, todas as soluções candidatas, comparando-as entre si a fim de classificá-las de acordo com o grau de dominância associado a cada indivíduo e dessa forma obter todos os *"fronts"*. Em seguida, as distâncias de aglomeração são calculadas para todos os indivíduos do primeiro *"front"*. O bit a ser mutado será aquele que gerou a solução que apresenta a maior distância de aglomeração. Nesse caso, os bits responsáveis por gerar as soluções situadas nas extremidades superiores e inferiores do *"front"* possuirão maior probabilidade de serem mutados, uma vez que receberam valor muito grande durante o processo para determinar as distâncias de aglomeração. A escolha da solução presente no extremo superior e no extremo inferior é feita de forma aleatória com distribuição normal. Pretende-se com isso incorporar ao algoritmo M-GEO a estratégia de elitismo através da escolha do primeiro *"front"* e a diversidade entre as soluções pela escolha do bit com maior distância de aglomeração.

É importante lembrar que no caso do M-GEO, o bit menos adaptado estará sempre presente no primeiro *"front"*. Uma mudança importante introduzida nessa proposta implica apenas em selecionar o melhor dentre todos os L indivíduos gerados a cada iteração, não requerendo, portanto, nenhum parâmetro adicional. A conseqüência mais importante dessa mudança é a eliminação do parâmetro " τ " como parâmetro de ajuste do algoritmo. Os passos para o algoritmo M-GEO proposto para o aprimoramento 1 são descritos a seguir:

- Inicialize aleatoriamente uma população (seqüência) de L espécies que codificam N variáveis de projeto (vetor X);
- Realize a mutação de todos os L bits da seqüência, um de cada vez, gerando L vetores X_b, onde b∈ {1, 2,, L} e calcule [F₁(X_b), F₂(X_b),, F_N F_{OBJ} (X_b)] L vezes. A aproximação da Fronteira de Pareto é verificada e atualizada, para conter apenas as soluções não-dominadas, e mantida em um arquivo separado;
- Identifique os "fronts" de dominância para as soluções obtidas com o cálculo de [F₁(X_b), F₂(X_b), ..., F_N F_{OBJ} (X_b)] L vezes, onde b∈ {1, 2, ..., L};
- Selecione o primeiro "front" e avalie as Distâncias de Aglomeração para os indivíduos desse "front";
- 5. Mute o bit que apresentar a maior Distância de Aglomeração;
- Verifique se o critério de parada foi atingido. Se afirmativo, siga para o Passo 8;
- Verifique se a população deve ser reinicializada. Em caso afirmativo, o algoritmo retorna ao Passo 1 e uma nova população é gerada aleatoriamente, mantendo-se as soluções da Fronteira de Pareto, caso contrário, o algoritmo retorna ao Passo 2;
- 8. Retorne o Conjunto de Pareto e a Fronteira de Pareto.

Figura 4.8 – Fluxograma do Algoritmo M-GEO_{AP1}.

4.4.3.1 Resultados para a função teste FTM1 (AP1)

Para o teste com a função FTM1 foram realizadas 8.000 avaliações da função objetivo, com 50 reinicializações. A abordagem empregada utiliza codificação binária das variáveis de projeto igual a 16 bits e estabeleceu-se o intervalo [-10, 10] como intervalo de variáveis de projeto. A Figura 4.9 apresenta a Fronteira de Pareto obtida pelo M-GEO com " τ "=4,0 e na Figura 4.10 é apresenta a Fronteira de Pareto obtidas pelo M-GEO_{AP1}.

Figura 4.9 – Fronteira para FTM1 obtida com o M-GEO canônico.

Figura 4.10 – Fronteira para FTM1 obtida com o M-GEO_{AP1}.

Observa-se que a implementação do aprimoramento não aumentou o número de pontos na Fronteira de Pareto. Analisando os extremos da Fronteira, enquanto o M-GEO canônico apresentou o valor máximo extremo de 22.026,46 tanto para F_1 como F_2 , o M-GEO_{AP1} obteve o valor máximo extremo de 21.986,17 para F_1 e 21.999,59 para F_2 . As Figura 4.11 e Figura 4.12 apresentam a ampliação da região tracejada das Figura 4.9 e Figura 4.10, respectivamente.

foram capturados com maior facilidade quando utilizado o algoritmo M-GEO, além de capturar maior número de pontos na região ampliada.

4.4.3.2 Resultados para a função teste FTM2 (AP1)

Para o teste com a função FTM2 foram realizadas 9.920 avaliações da função objetivo, com 10 reinicializações. A abordagem empregada utiliza codificação binária das variáveis de projeto igual a 16 bits e estabeleceu-se o intervalo [-10, 10] como intervalo de variáveis de projeto. A Figura 4.13 apresenta a Fronteira de Pareto obtida pelo M-GEO para a função FTM2 com " τ "=0,5 e na Figura 4.14 é apresenta a fronteira de Pareto obtidas pelo M-GEO_{AP1}.

Novamente, o desempenho do algoritmo M-GEO_{AP1} mostrou-se bastante desfavorável. Enquanto o M-GEO canônico capturou 1783 pontos da fronteira de Pareto, considerando o critério de não dominância, i.e., apenas os pontos não-dominados, o M-GEO_{AP1} capturou apenas 404 pontos.

4.4.3.3 Resultados para a função teste FTM3 (AP1)

Essa função foi escolhida por apresentar regiões não-convexas na Fronteira de Pareto. Para o teste com a função FTM3 foram realizadas 16.000 avaliações da função objetivo, como critério de parada, com 50 reinicializações.

Estabeleceu-se o intervalo $[0, \pi]$ como intervalo de variáveis de projeto cada uma codificação em 16 bits. A Figura 4.15 apresenta a Fronteira de Pareto obtida pelo M-GEO para FTM3 com " τ "=0,5 e na Figura 4.16 é apresenta a Fronteira de Pareto obtida pelo M-GEO_{AP1}.

M-GEO canônico.

com o M-GEO_{AP1.}

Para a FTM3 os resultados obtidos pelo M-GEO_{AP1} mostraram-se, aparentemente, melhores aos obtidos pelo M-GEO canônico, com 154 pontos na Fronteira de Pareto.

Figura 4.17 – Fronteira para FTM3 obtida com o M-GEO (extremo superior).

Porém uma análise mais criteriosa nos extremos da Fronteira mostrou que o M-GEO canônico conseguiu capturar mais pontos, como mostram as Figura 4.17 e Figura 4.18, respectivamente.

4.4.4 Aprimoramento 2

O segundo aprimoramento proposto difere do primeiro pela escolha do front que é selecionado pela pressão de seleção imposta pelo parâmetro " τ ". Essa proposta elimina o elitismo mas garante, com uma probabilidade dada por P(k) α k^{- τ}, que um determinado front seja selecionado. Após escolhido o front, o bit selecionado para sofrer a mutação será aquele que gerou a solução com maior distância de aglomeração, nesse caso as soluções presentes nas extremidades do front, mantendo assim a diversidade entre as soluções. Os passos para o algoritmo M-GEO proposto para o aprimoramento 2 são descritos a seguir:

- Inicialize aleatoriamente uma população (seqüência) de L espécies que codificam N variáveis de projeto (vetor X);
- Realize a mutação de todos os L bits da seqüência, um de cada vez, gerando L vetores X_b, onde b∈ {1, 2,, L} e calcule [F₁(X_b), F₂(X_b),, F_N F_{OBJ} (X_b)] L vezes. A aproximação da Fronteira de Pareto é verificada e atualizada, para conter apenas as soluções não-dominadas, e mantida em um arquivo separado;
- Identifique os FP "*fronts*" de dominância para as soluções obtidas com o cálculo de [F₁(X_b), F₂(X_b),, F_N F_{OBJ} (X_b)] L vezes, onde b∈ {1, 2, ..., L};
- 4. Gere um número aleatório RAN com distribuição uniforme no intervalo de [0,1]. Se P(rank) α k^{-τ}, com rank∈{1, 2, ..., FP} é igual ou maior que RAN, o front é selecionado para avaliar as Distâncias de Aglomeração, senão um novo front é escolhido. O valor de "τ" influencia no modo como a busca de soluções viáveis é feito. Se "τ" for muito grande, apenas o primeiro front ordenado será selecionado em cada iteração do algoritmo, e se "τ" for igual a zero, qualquer front será selecionado;

- 5. Avalie as Distâncias de Aglomeração para os indivíduos do front selecionado;
- 6. Mute o bit que apresentar a maior Distância de Aglomeração;
- Verifique se o critério de parada foi atingido. Se afirmativo, siga para o Passo 8;
- Verifique se a população deve ser reinicializada. Em caso afirmativo, o algoritmo retorna ao Passo 1 e uma nova população é gerada aleatoriamente, mantendo-se as soluções da Fronteira de Pareto, caso contrário, o algoritmo retorna ao Passo 2;
- 9. Retorne o Conjunto de Pareto e a Fronteira de Pareto;

Figura 4.19 – Fluxograma do Algoritmo M-GEO_{AP2}.

4.4.4.1 Resultados para a função teste FTM1 (AP2)

Semelhante ao aplicado no aprimoramento 1, os resultados para a função FTM1 foram obtidos após 8.000 avaliações das funções objetivos e 50 reinicializações. A abordagem empregada utiliza codificação binária das variáveis de projeto igual a 16 bits e estabeleceu-se o intervalo [-10, 10] como intervalo de variáveis de projeto.

A Figura 4.20 apresenta a Fronteira de Pareto obtida pelo M-GEO canônico para FTM1 com " τ "=4,0 e na Figura 4.21 é apresenta a Fronteira de Pareto obtidas pelo M-GEO_{AP2}.

Figura 4.20 – Fronteira para FTM1 obtida com o Figura 4.21 – Fronteira para FTM1 obtida M-GEO canônico. Figura 4.21 – Fronteira para FTM1 obtida com o M-GEO_{AP2}

Os resultados obtidos com a implementação do segundo aprimoramento também foram bastante desfavoráveis. Enquanto o M-GEO canônico capturou 5.220 pontos da Fronteira, o M-GEO_{AP2} capturou apenas 2.840 pontos. Apresentou também grande incidência de soluções repetidas.

Analisando os extremos da Fronteira, o M-GEO_{AP2} obteve o valor máximo extremo de 21.979,46 para F_1 e 21.859,05 para F_2 . A Figura 4.22 e Figura 4.23 apresentam a ampliação da região tracejada da Figura 4.20 e Figura 4.21 respectivamente.

Nesse caso, observa-se uma redução na quantidade de pontos capturada pelo M-GEO_{AP2} se comparada com o M-GEO canônico e também com o M-GEO_{AP1}.

4.4.4.2 Resultados para a função teste FTM2 (AP2)

Os resultados para a função FTM2 foram obtidos após 9.920 avaliações das funções objetivos com 10 reinicializações. A abordagem empregada utiliza codificação binária das variáveis de projeto igual a 16 bits e estabeleceu-se o intervalo [-10, 10] como intervalo de variáveis de projeto. A Figura 4.24 apresenta a Fronteira de Pareto obtida pelo M-GEO canônico para FTM2 com " τ "=0.5 e na Figura 4.25 é apresenta a Fronteira de Pareto obtidas pelo M-GEO_{AP2}.com " τ "=2,0. Neste caso, os valores de " τ " usados foram aqueles que apresentaram melhores desempenhos para cada um dos algoritmos.

Os resultados também foram desfavoráveis para o M-GEO_{AP2}. Enquanto o M-GEO canônico capturou 1783 pontos, o M-GEO_{AP2} capturou apenas 1.011 pontos da Fronteira, porém o resultado foi superior ao obtido no M-GEO_{AP1}.

4.4.4.3 Resultados para a função teste FTM3 (AP2)

Os resultados para a função FTM3 foram obtidos após 8.000 avaliações das funções objetivos com 50 reinicializações. Estabeleceu-se o intervalo [0, π] como intervalo de variáveis de projeto e a abordagem empregada utilizou codificação binária das variáveis de projeto igual a 16 bits. A Figura 4.26 apresenta a Fronteira de Pareto obtida pelo M-GEO canônico com " τ "=0,5 e na Figura 4.27 é apresenta a Fronteira de Pareto obtida pelo M-GEO obtidas pelo M-GEO_{AP2}, considerando " τ "=2,0.

Figura 4.26 – Fronteira para FTM3 obtida com o M-GEO.

Para a FTM3, novamente os resultados obtidos pelo M-GEO_{AP2} mostraram-se desfavoráveis. O algoritmo conseguiu capturar 87 pontos da Fronteira contra os 124 pontos obtidos no M-GEO canônico. Nesse caso, também inferior aos 154 pontos obtidos pelo M-GEO_{AP1}.

Figura 4.28 – Comparativo das Fronteiras obtidas para a função FTM3 (M-GEO, M-GEO_{AP1} e M-GEO_{AP2})

4.4.5 Análise dos resultados obtidos nas propostas de aprimoramento

A Tabela 4.2 apresenta um resumo dos resultados obtidos pelo M-GEO e M-GEO_{AP1}. Para a função FTM1, todas as 8.000 soluções geradas são soluções não-dominadas. Embora o aprimoramento M-GEO_{AP1} tenha conseguido capturar todas as soluções não-dominadas, apenas 35,4% das soluções estão representadas na Fronteira de Pareto. Para o M-GEO canônico esse índice foi de 65,3%.

Função	N. de s	oluções	Solu Não-do	ções minadas	ões Soluções ninadas repetidas		Soluç Front Pa	ção na eira de reto
	M-GEO	M-GEO _{AP1}	M-GEO	M-GEO _{AP1}	M-GEO	M-GEO _{AP1}	M-GEO	M-GEO _{AP1}
FTM1	8.000	8.000	8.000	8.000	2.780	5.170	5.220	2.830
FTM2	9.920	9.920	2.612	6.336	829	5.932	1.783	404
FTM3	16.000	16.000	132	173	8	19	124	154

Tabela 4.2 – Resultados obtidos para o aprimoramento 1.

Uma característica observada para a FTM1 é que todas as soluções geradas (8000 soluções) encontram-se na Fronteira de Pareto, i.e., todas são soluções não-dominadas, porém com grande número de soluções repetidas e espalhadas pela Fronteira, representando 64,6% das soluções capturadas pelo M-GEO_{AP1}. Para o M-GEO canônico, as soluções repetidas ficaram em 34,8%. Avaliando os valores dessas soluções no espaço de projeto, observou-se que as soluções repetidas apresentavam também os mesmos valores, sendo dessa forma, descartadas do conjunto de soluções candidatas. Isso reforça uma característica do M-GEO, onde o resultado esperado ao longo de várias iterações é um movimento aleatório em direção à Fronteira de Pareto, com o M-GEO convergindo para um ponto qualquer da mesma.

Para a FTM2, com o M-GEO_{AP1}, apenas 4,1% das soluções geradas estão presentes na Fronteira de Pareto contra os 18,0% das soluções geradas pelo M-GEO canônico. Para a FTM3, os resultados obtidos foram próximos, com pequena vantagem para o M-GEO_{AP1}, com 154 soluções presentes na Fronteira de Pareto.

A Tabela 4.3 apresenta os resultados obtidos para o M-GEO_{AP2}. Para a FTM1 o resultado obtido com o M-GEO_{AP2} foi inferior ao obtido pelo M-GEO, com apenas 35,5% das soluções geradas presentes na Fronteira de Pareto contra os 65,3% obtidos pelo M-GEO canônico. Nesse caso, o desempenho do M-GEO_{AP2} foi semelhante ao desempenho do M-GEO_{AP1}. Para as funções FTM2 e FTM3 o desempenho desfavorável para o M-GEO_{AP2} também se repetiu. Para a FTM2 apenas 10,2% das soluções geradas estão presentes na Fronteira de Pareto e para a FTM3 apenas 0,5%.

Função	N. de s	oluções	Solı não-do	Soluções Soluções não-dominadas repetidas		uções etidas	Solu Front Pa	ção na eira de ireto
	M-GEO	M-GEO _{AP2}	M-GEO	M-GEO _{AP2}	M-GEO	M-GEO _{AP2}	M-GEO	M-GEO _{AP2}
FTM1	8.000	8.000	8.000	8.000	2.480	5.160	5.220	2.840
FTM2	9.920	9.920	2.612	2.737	829	1.726	1.783	1.011
FTM3	16.000	16.000	132	89	8	2	124	87

Tabela 4.3 – Resultados obtidos para o aprimoramento 2.

Para a implementação M-GEO_{AP2}, a medida que o valor do parâmetro " τ " aumenta, os resultados obtidos se aproximam dos resultados obtidos pelo M-GEO_{AP1}. Isto ocorre pois com o aumento do " τ ", a pressão de seleção imposta por esse parâmetro privilegia a escolha do primeiro "*front*", assim como é proposto na implementação M-GEO_{AP1}. Assim, o M-GEO_{AP2} pode ser considerado como uma versão generalizada para a proposta.

4.4.6 Conclusões da Proposta dos Aprimoramentos

As análises dos resultados obtidos nos testes de desempenho das propostas de aprimoramento não foram baseadas em métricas, como proposto por Veldhuizen et al. (2000) e Coello et al. (2007). Embora nenhuma métrica tenha sido utilizada, foi possível avaliar o desempenho dos aprimoramentos pela simples comparação visual e quantidade de pontos na Fronteira de Pareto.

A proposta de incorporar ao algoritmo M-GEO canônico a estratégia de elitismo como forma de melhorar o desempenho do algoritmo de otimização (ZITZLER et al., 2000) não surtiu o efeito esperado, assim como o uso da técnica de Distância de Aglomeração (DEB et al., 2000). Os aprimoramentos implementados foram capazes de gerar as Fronteiras de Pareto aproximadas para os problemas propostos mas o desempenho não foi melhor que o obtido pelo M-GEO canônico. A eliminação do parâmetro " τ " no Aprimoramento 1 tornou o algoritmo excessivamente determinístico.

A explicação pode estar na própria natureza do algoritmo M-GEO canônico onde todas as funções objetivo competem pelo privilégio de serem usadas como sendo a função de atribuição de adaptação e apenas uma é escolhida aleatóriamente para guiar a busca em direção à Fronteira de Pareto. Na implementação da proposta de aprimoramento o uso das funções objetivo para a atribuição de adaptação foi eliminado. Com isso, diminuiu-se a capacidade do algoritmo em localizar pontos na região central da Fronteira de Pareto presumida. Além disto, o uso do critério adotado para mutar o bit (a solução de maior distância de aglomeração), produziu inúmeras soluções repetidas. Como já era sabido, esse critério privilegia os bits que geram soluções localizadas nos extremos da Fronteira de Pareto. Porém, a probabilidade de uma mesma solução localizada no extremo da Fronteira se manter no extremo ao longo da busca não é desprezível. Nestes casos, a mutação do bit gera a solução anterior. Em outras palavras, o algoritmo estaria "re-visitando" um mesmo local no espaço de busca.

4.4.7 Escolha do Algoritmo de Otimização Multiobjetivo

Embora a metodologia possa utilizar qualquer otimizador multiobjetivo, optouse por utilizar o M-GEO pela sua simplicidade de implementação, baixo custo computacional e competividade quando comparado a outros algoritmos (GALSKI, 2006), além de ser um algoritmo desenvolvido e utilizado no INPE. Esperava-se que o desempenho das aprimorações propostas para o M-GEO resultassem em uma melhora de seu desempenho. Como isso não ocorreu, usou-se sua versão canônica na implementação da metodologia.

5 METODOLOGIA DESENVOLVIDA PARA A SELEÇÃO E POSICIONAMENTO ÓTIMO DE COMPONENTES ELETRÔNICOS EM PCI

Como descrito nos capítulos anteriores, a abordagem tradicional usada para o desenvolvimento de projeto de equipamentos eletrônicos destinados a aplicação espacial segue uma filosofia que visa a minimização de riscos quanto à confiabilidade e prazos. Com a definição do diagrama elétrico do equipamento e de suas dimensões (envelope) é iniciado o projeto das PCIs e, de acordo com os requisitos de missão, é feita a seleção do nível de qualidade dos componentes a serem instalados nas PCIs. Para as mesmas condições ambientais, quanto maior o nível de qualidade do componente, menor será a sua taxa de falhas. Por outro lado, maior será o seu preço e o seu prazo de entrega.

A escolha do nível de qualidade para os componentes é baseada fortemente no requisito de confiabilidade especificada para a missão. Em muitos casos, a escolha dos componentes privilegia aqueles com menores taxas de falhas, resultando em equipamentos com índice de confiabilidade muito maior que o especificado, porém mais caros e com maior tempo para o seu fornecimento.

Como a taxa de falhas de um componente eletrônico cresce com o aumento da sua temperatura de operação, a adequada escolha do nível de qualidade do componente eletrônico e a redução de sua temperatura de operação através do seu posicionamento ótimo na PCI podem contribuir para o atendimento da confiabilidade requerida com o menor custo.

Portanto, a metodologia proposta neste trabalho visa, com a aplicação de um otimizador multiobjetivo associado a um conjunto de rotinas e um conjunto de arquivos de entrada, encontrar um conjunto de soluções que considera a seleção do nível de qualidade dos componentes e seus posicionamentos na PCI, de forma a otimizar simultaneamente as funções objetivos:

- Taxa de falhas total dos componentes (FX₁),
- Custo total dos componentes (FX₂) e,

• Comprimento total das conexões entre os componentes (FX₃).

O objetivo do uso de um otimizador multiobjetivo na metodologia é o de reduzir o tempo gasto para encontrar, não apenas uma solução satisfatória, mas um conjunto de soluções otimizadas, para um processo que tradicionalmente é feito de forma "manual" e com forte interação do projetista de *layout* e do especialista térmico. Embora não haja nenhuma restrição quanto ao otimizador multiobjetivo a ser usado na implementação da metodologia proposta, o escolhido foi o M-GEO canônico. Os motivos que levaram a essa escolha foram a sua simplicidade de implementação, a sua simplicidade computacional e sua eficiência quando comparado a outros algoritmos (GALSKI, 2006), além de poder utilizá-lo em uma área de aplicação ainda não explorada por esse algoritmo.

No Capítulo 4 foram propostos aprimoramentos para o otimizador M-GEO canônico mas os resultados não apresentaram melhoras significativas para as funções testes usadas e, para algumas delas, o resultados foi bastante desfavorável. A Figura 5.1 apresenta, de maneira simplificada, os elementos que compõem o Aplicativo desenvolvido para a validação da metodologia, descritos em mais detalhes nas sub-Seções a seguir.

Figura 5.1 – Diagrama em Blocos para a metodologia proposta.

No âmbito deste trabalho, com exceção das rotinas do software THANMODEL (VLASSOV, 2005) usadas para o cálculo das temperaturas dos componentes e PCB, o algoritmo M-GEO canônico e as rotinas usadas para o cálculo da área de sobreposição e comprimento das conexões foram escritas e testadas pelo autor. Com a implementação das rotinas e do algoritmo foi possível o melhor entendimento do processo de otimização. Todas as rotinas e o algoritmo foram desenvolvidos em linguagem Fortran[®] e será referenciado ao longo do texto simplesmente como Aplicativo.

5.1 Formulação do problema de otimização

O problema de otimização consiste em selecionar os níveis de qualidade para um subconjunto de componentes e posicioná-los na PCI de forma a reduzir suas temperaturas de operação. As restrições são impostas, tanto para as temperaturas máximas de operação dos componentes, as quais devem permanecer dentro dos intervalos especificados, quanto para as áreas de sobreposição entre os componentes ou entre componentes e "frame", as quais devem ser nulas.

Matematicamente, o problema de otimização é formulado como:

Minimizar:

FX₁ = taxa de falhas total dos componentes = $\sum_{i=1}^{N_{comp}} D_i + B_i \exp \left[-A_i \left(\frac{1}{\text{Tjc}_i + 273} - \frac{1}{298} \right) \right]$ $FX_{2} = comprimento \ total \ das \ conexões \ = \sum_{i=1}^{Ncomp} \sum_{i=1}^{Nnettist} |x_{2_{i+1}} - x_{1_{i}}| + |y_{2_{i+1}} - y_{1_{i}}|$ FX_3 = Preço total dos componentes = $\sum_{i=4}^{Ncomp} custo_i$ S)

Sujeito a:
$$Tj_{(comp)} \le T_{MAX} \ (\le 100^{\circ}C)$$

$$OVLAP = 0$$

onde:

Ai, Bi, Di = parâmetros que depende do tipo do encapsulamento, das características elétricas e térmicas do componente;

N_{comp} = número de componentes considerado na metodologia;

N_{netlist} = número de conexões entre componentes considerados na metodologia (Apêndice B);

OVLAP = área de sobreposição entre componentes ou entre componentes e "frame".

e as variáveis de projeto:

 $X1_i$, $Y1_i$ = coordenadas do componente i;

 $X2_{i+1}$, $Y2_{i+1}$ = coordenadas do componente i+1 (componente i e componente j); custo_i = custo do componente i;

Tj_i = temperatura de junção do componente i.

As temperaturas de junções são obtidas através das temperaturas da placa nos locais de montagem de cada componente i ($T_{b,i}$), dada pela equação:

$$T_{jc,i} = T_{b,i} + Q_i R_{cb,i}$$

onde:

Q_i é a dissipação de potência do componente i (W),

 $R_{cb,i}$ é a resistência térmica de montagem do componente i sobre a placa (°C/W)

A temperatura $T_{b,i}$ é definida como sendo a temperatura média na região do componente i da placa $\Delta T(x,y)$:

$$T_{b,i} = T_{\infty} + \frac{1}{A_i} \int_{Y_{1,i}}^{Y_{2,i}} \int_{X_{1,i}}^{X_{2,i}} \Delta T(x, y) dx dy$$

onde:

 T_{∞} é temperatura do sorvedouro de calor, que pode ser a temperatura ambiente

e/ou a temperatura da moldura ("frame");

 $\Delta T(x,y) = T(x,y) - T_{\infty}$ é diferença de temperatura da placa na posição do componente e do sorvedouro.

O campo de temperatura sobre a placa é obtido através do conjunto de rotinas THANMODEL, que obtem a solução numérico-analítica da equação de conservação de energia em regime permanente:

$$\delta \frac{\partial^2 \Delta T(x,y)}{\partial x^2} + \delta \frac{\partial^2 \Delta T(x,y)}{\partial y^2} + \frac{q(x,y)}{k} - \frac{h_z}{k} \Delta T(x,y) = 0$$

onde:

 δ é a espessura da placa

k é a condutividade térmica efetiva da placa

h_z é o coeficiente de transferência de calor de convecção e/ou radiação (linearizado)

A dissipação de calor do componente *Q_i* está embutida no termo fonte da equação de maneira que, para o componente i, o valor é definido somente nas coordenadas que definem o local do componente:

$$\sum_{i=1}^{N_{comp}} \frac{\underline{Q}_i}{A_i} \bigg|_{\substack{X1, i \le x \le X2, i \\ Y1, i \le y \le Y2, i}} \Longrightarrow q(x, y)$$

No termo q(x,y), estão definidos também os acoplamentos com as áreas de fixação da placa com a moldura (*frame*) que serve como condição de contorno.

5.2 Implementação da metodologia

5.2.1 Arquivos de entrada de dados

O Aplicativo implementado não dispõe de interface gráfica com o usuário para a entrada de dados. As informações das características mecânicas e propriedades térmicas da PCI e dos componentes, bem como os parâmetros para o cálculo das taxas de falhas dos componentes que irão participar do processo de posicionamento na PCI são obtidos a partir da leitura dos arquivos externos no formato de planilha de dados do tipo Excel[®]. As informações obtidas dos arquivos externos são:

- Características mecânicas e propriedades térmicas da PCI;
- Coordenadas das áreas da PCI em contato com o "frame";
- Características térmicas (ver Apêndice C) dos componentes;
- Geometria do "case" dos componentes;
- Lista de conexões entre os componentes ("netlist", ver Apêndice B);
- Preço dos componentes para os diferentes níveis de qualidade;
- Parâmetros para o cálculo das taxas de falhas dos componentes para os diferentes níveis de qualidade.

A Figura 5.2 apresenta um exemplo simplificado dos parâmetros de entrada usados para o cálculo das taxas de falhas e preços dos componentes e na Figura 5.3 é apresentado o modelo de arquivo de entrada contendo as características mecânicas e térmicas para a PCI e componentes.

#	Printed Board	: XYZ								
#	Dados Confia	bilidade: Doc.	xx.yy.eee.sss_ F	Rev01						
# #	1. Pi-factor									
#	C1 = Die com	plexity								
#	C2 = Package failure rate									
#	piQ = Quality factor									
#	piE = Environmental factor									
#	piL = Learnir	ng (maturity)	factor							
# CLASS	Ref.	Price	Package	C1	C2	piQ	piE	piL		
1	U1	123.00	CDIP40	0.140	0.024	0.25	0.5	1.0		
2	U1	98.40	CDIP40	0.140	0.024	1.00	0.5	1.0		
3	U1	67.65	CDIP40	0.140	0.024	2.00	0.5	1.0		
4	U1	12.30	CDIP40	0.140	0.024	10.0	0.5	1.0		
1	U26	75.00	TO99	0.010	0.000	0.25	0.5	1.0		
2	U26	60.00	TO99	0.010	0.000	1.00	0.5	1.0		
3	U26	41.25	TO99	0.010	0.000	2.00	0.5	1.0		
4	1126	7 50	TO99	0.010	0.000	10.0	0.5	10		

Figura 5.2 – Arquivo de entrada com os parâmetros para o cálculo da taxa de falhas dos componentes.

#									
#	Printed Board	XYZ							
#	Dados Extraíd	os Doc. xx.y	eee.sss Revo)2					
#									
#	1. Board dime	ensions and	properties:						
			h h						
#	v [mm] Long	h of the beau	d				Tramb (C) T	omp of upw	ard ambiant
+	x [mm] - Leng		u ,				Tamb [0]	emp. or upwa	
F	y [mm] - widtr	I OI THE DOARC) Is a soul				Tamb [C] - Te	mp. of side a	ampient
	ait [mm] - Thia	kness of the	board				n [w/C/m2]	Average coel	rr. neat transfe
	dlt_m [mm] - T	otal thicknes	s of the metalliz	ation layers				from the bo	ard edges
	% metal - % c	of metallizatio	on of the total ar	ea of the boar	ď		epsboard - av	erage emissi	ivity of board
	k [W/m/C] - Th	nermal condu	ctivity of the ma	terial of the b	oard				
	k m [W/m/C]	- Thermal co	nductivity of the	metalliztion la	ivers				
	Qtot [W] - Tota	al heat dissip	ation on board (including war	m components	s)			
	h z [W/C/m2]	- Average co	efficient of heat	transfer from	the board to s	-, still air			
	[, 0,]	/ Wordgo oc							
v [mm]	v [mm]	dit [mm]	dit m [mm]	% motal	k [W/m/C]	km	Otot [W]	h z	Tzamb
175	170	1.6	0.25	70 metai.	0.0	<u> </u>	1.0	0.000001	45
1/5	170	1.0	0.35	31	0.9	0.5	1.3	0.000001	40
	2. Coordinate	es of board a	reas of contac	t with frame					
	k_fl [W/m/C] -	Filler therma	I conductivity **			dlt_f [mm] - F	iller thickness		
	Tf [C] - Maxim	um Frame te	mperature						
	rca [C m2/W]	- Contact Sp	ec.Thermal Res	is for ambient	conditions. fo	r areas of abo	ut 1in2, presse	d together a	t 100 psi
	rcv [C m2/W]	Contact Sp	ec. Thermal Res	is for vacuum	conditions for	or areas of abo	ut 1in2, press	ed together a	t 100 psi
	* in [mm] r	ctangulare.	Coordinates: (1)	- left bottom	and (2) - right	ton			
	** Therm	- RTV- 0.21	0.83. Enovy +-	flon - 0.2. The	and (2) - Hyll	1 0' Filled en	NV - 2 1. Cil D	ad enroaders	. 20 20
	** No filters of	u. n. iv. 0.31.		moli - U.Z, The	ninai yrease -	4 for orthing	ony - 2.1, 311-P	to spieauers	5. 2.02.9
	INU IIIIER: SEI	K_II=U, and	set specific The	mai nesistar	ice: ica=6.5e-	4 ior ampient	and rev=32.e-4	FIOT VACUUM	
	identity mu	ist begin with	1						
Identity	x1 (left)*	x2 (right)	y1 (bottom)	y2 (top)	dit_fi [mm]	k_fl	Tf [C]	rca	rcv
1	10	12	0	170	0	0	45	6.50E-04	3.20E-03
2	12	173	84	86	0	0	45	6.50E-04	3.20E-03
3	173	175	0	170	0	0	45	6.50E-04	3.20E-03
.4	12	173	0	2	0	0	45	6 50E-04	3 20E-03
)5)5	12	172	169	170	0	0	45	6 50E 04	2 20E 02
5	12	175	100	170	0	0	40	0.302-04	3.20L-03
f f f f f f f f f f f f f f f f f f f	Rja [C/W] - Th Rjc [C/W] - Th Ta [oC] - Tem Rcf [C/W] - Th Tjmax [C] - Ma k filler [W/m/C eps** [-] - Emi * f junction t	ermal Resist ermal Resist perature of a ermal resista aximum opera] - thermal co ssivity coeffic emperature i netal - 0.05, f	ance Junction-tr ance Junction-tr mbient ance Case-to-Fr ating temperature onductivity of the pace is not specified, or metal - 0.1, fr	o-Ambient, de o-Case, define ame, if applic. re on junction er material; if kage case the case tem or painted sur	fined in techn ed in technical Tf [oC] - Tem able; if not, se t, defined in te not applicable perature is use faces, ceramic	ical SPEC I SPEC perature of fra t a big number chnical SPEC , set k=0 ed instead;set cs or plastics -	me (i.e. ambie r, say 1.E+10 Rjc=0. 0.8	nt 2)	
	*** Area ident	ity, defined ir	n the section 5					-	
Identity	Package	Qmax [W]	Tjmax [C]	Rjc* [C/W]	Rja [C/W]	Ta [C]	Rcf [C/W]	Tf [C]	k filler
uc80C32	CDIP40	0.066	125	100	0	45	1.00E+10	45	0
LM117	TO99	0.026	125	3.3	0	45	1.00E+10	45	0
Res200K	RLR05C	0.018	150	0	0	45	1.00E+10	45	0
	4. Geometry of xi,yi [mm] - Co Atot [mm2] - to	of warm con ordinates of otal area of th	nponents area of montage ne package	em, which cov	er all leads of	the component	nt		
	Ac [mm2] - ar	a of the nec	kage surface wh	hich looks the	board				
	N loado num	her of loads	nage surrace wi		board				
	in leads - rium		an an Islandar a d						
	L leads - lengt	n of leads af	ter soldering to j	Diale					
	Deqv - Equiva	lent diameter	r of leads; for re	ctnagular cros	s section calc	ulate by equiv	alent area		
	h_b [mm]* - D	istance from	component surf	ace (Ac) to th	e board				
	k lead [W/m/0	C] - Thermal (conductivity of n	naterial of the	leads				
	* verv freaue	ently h b = L	leads; In genera	al case L lead	s>=h b				
		.,	set, setting						
# Identity	Package	x1 (left)*	x2 (right)	v1 (bottom)	v2 (ton)	Atot [mm2]	Ac [mm2]	N leads	L leads. [mr
	CDIP40	69.8	86.6	96.4	146.4	8/0	750	40	2.0000, [111
LM117	T099	51	60.5	71.9	81.4	90.25	70	3	2
_IVI 1 /	1035 DI D050	50.0	00.0	11.5	54.7	15.0	10	3	2
Deegoool									

Figura 5.3 – Arquivo de entrada com as características mecânicas e térmicas da PCI e componentes.

5.2.2 Codificação das variáveis de projeto

As variáveis de projeto são codificadas por uma única seqüência de L bits que representa os N componentes. Cada componente é codificado para representar as seguintes características:

- 1) A coordenada do ponto central do componente na PCI (X_i, Y_i);
- 2) O ângulo de rotação do componente (R_{1i}, R_{2i});
- 3) A seleção do nível de qualidade do componente (S_{1i}, S_{2i}).

Para entendimento da codificação das variáveis de projeto, considere a codificação de um componente representado por 20 bits, conforme apresentado na Figura 5.4.

Figura 5.4 – Codificação para um componente considerado na metodologia.

De acordo com a Figura 5.4, dois bits da seqüência representam a rotação do componente (R_{1i} , R_{2i}), dois bits representam a seleção do nível de qualidade para o componente (S_{1i} , S_{2i}) e os 16 bits restantes representam as coordenadas da posição central do componente (X_i , Y_i). Os dois bits usados para codificar a rotação possibilitam rotacionar o componente em passos de 90°, conforme representado na Figura 5.5.

Figura 5.5 – Possibilidades de rotação do componente considerados na metodologia.

Os 16 bits usados para representar as coordenadas da posição central do componente permitem mover o componente em qualquer posição no plano bidimensional da PCI com até 256x256 (2⁸x2⁸) unidades de comprimento.

Para os componentes que precisarem ser fixado em um determinado local da PCI por requisito de projeto mas que seja selecionado a participar do processo de posicionamento e escolha do nível de qualidade, o algoritmo ignora os bits (R_{1i}, R_{2i}) e (X_i, Y_i) , responsáveis pela rotação e pela posição central do componente.

A área localizada fora da área útil da PCI é considerada como área proibitiva para o posicionamento de componentes. O uso das coordenadas da posição central do componente como referência para o seu posicionamento permite que parte do mesmo seja posicionada fora da área útil da PCI, que em termos práticos não é aceitável. Nesses casos, um alto índice de adaptação é atribuído aos bits (com uso da técnica de penalidade) que, ao se modificarem, levam à soluções inviáveis. Isso também ocorre para os casos em que o posicionamento do componente gera a sobreposição com outros componentes ou entre componente e "frame".

Os dois bits S_{1i} e S_{2i} são usados para selecionar o nível de qualidade dos componentes e permitem selecionar até quatro níveis distintos, além de seus respectivos preços. Associado à cada nível de qualidade existe um conjunto de parâmetros que são usados para o cálculo da taxa de falhas do componente. Para efeito de exemplificação, considere o caso de um resistor que possui quatro níveis de qualidade (níveis S, R, P e M) que, além de atenderem aos requisitos de missão, são possíveis de serem adquiridos dentro do prazo exigido. Nesse caso, esses quatro níveis seriam considerados na metodologia. Os bits S_{1i} e S_{2i} permitem então escolher um desses níveis e selecionar os parâmetros usados para o cálculo de sua taxa de falhas (taxa de falhas base (λ_b) e os fatores- π). Porém, nem todos os componentes podem possuir os quatro níveis de qualidade. Quando isso ocorre, um alto índice de adaptação é

89

atribuindo aos bits (com uso da técnica de penalidade) que, ao se modificarem, levam à soluções inviáveis.

5.2.3 Conjunto de Rotinas

As rotinas OVLAP, LENGTH e as rotinas do software THANMODEL (VLASSOV, 2005) foram incorporadas ao algoritmo M-GEO em forma de subrotinas. Essas rotinas têm a função de gerar as informações necessárias para que o M-GEO calcule as funções objetivo. A seguir serão descritas cada uma das rotinas.

5.2.3.1 Rotina OVLAP

A rotina OVLAP é responsável pelo cálculo da área de sobreposição ("*overlap*") entre os componentes e entre os componentes e as áreas dos "*frames*". Embora na prática essa situação não seja permitida, isso pode ocorrer já que o M-GEO não impõe restrições na geração das coordenadas dos componentes (soluções candidatas) que não sejam aquelas definidas pelos limites da placa.

Para o cálculo da área de sobreposição o componente deve ser representado pelo par de coordenadas (xmin,ymin) e (xmax,ymax). Estes pares são calculados pela rotina a partir das coordenadas da posição central do componente (X_i, Y_i) e das informações de dimensões dos componentes adquiridas do arquivo de dados de entrada.

5.2.3.2 Rotina LENGTH

A rotina LENGTH é responsável por calcular o comprimento total das conexões entre os componentes através do método "*Manhattan Distance*". Neste método, a distância entre dois pontos pode ser calculada pela soma das diferenças entre as coordenadas "(x,y)" dos pontos. O comprimento das conexões é calculado considerando o centro de cada componente. As conexões entre os componentes ("netlist") são obtidas a partir de um dos arquivos de entrada de dados.

5.2.3.3 Rotina THANMODEL

THANMODEL ("*THermal ANalytical MODeling of ELectronic boards*") (VLASSOV, 2005) é na verdade um conjunto de rotinas desenvolvido para o cálculo de temperaturas dos componentes eletrônicos instalados em PCI. Além da temperatura do componente, as rotinas são capazes de fornecer a temperatura média da PCI. As temperaturas são obtidas através da resolução de um sistema de equações algébricas com o número de equações iguais ao número de componentes e as áreas dos "*frames*".

5.2.3.4 Rotina para cálculo da taxa de falhas

Como apresentado no Capitulo 2, a taxa de falhas de um componente (λ_p) é calculada pelo produto da taxa de falhas base (λ_b) do componente e os parâmetros conhecidos como fatores- π . Esses fatores levam em consideração vários aspectos do componente, tais como: condições de operação (π_T para temperatura e π_V para voltagem), qualidade do componente (π_Q), maturidade (π_L , baseado na idade do componente e/ou tecnologia) e ambiental (π_e , baseado nas condições ambientais ao qual o componente será submetido).

Os diferentes níveis de qualidade de um componente são caracterizados pelo parâmetro π_Q . Como exemplo, um resistor classificado como nível S apresenta o valor para o parâmetro π_Q igual a 0,03 enquanto que esse mesmo componente classificado como nível M apresenta o valor para o parâmetro π_Q igual a 1,00, ou seja, para a mesma condição ambiental e temperatura de operação, a taxa de falhas de um resistor nível M é 33,33 vezes maior que um resistor nível S.

O cálculo da taxa de falhas individual do componente e a taxa de falhas total é realizado pelo Aplicativo com o uso das fórmulas apresentadas na Tabela 2.2. Com exceção do fator- π_T , todos os demais fatores- π e as taxas de falhas base (λ_b) dos componentes são obtidos através de um dos arquivos de entrada de dados.

91

Com as coordenadas de posição dos componentes na PCI, o conjunto de rotinas THANMODAL calcula as temperaturas para cada componente. A temperatura de cada componente é então usada para determinar o fator- π_T desse componente cujo valor será usado para o cálculo de sua taxa de falhas.

5.2.4 Seleção do nível de qualidade e preço dos componentes

Os níveis de qualidade e os preços dos componentes são obtidos a partir de um dos arquivos de entrada de dados, conforme apresentado na Tabela 5.1.

Componente	Preço dos co	omponentes (em U\$) de a	acordo com o nível d	e qualidade
Componente	Nível 1	Nível 2	Nível 3	Nível 4
80C32	5962-0051801VQC	5962-0051801QQC		
TID	30Krad	30Krad	-	-
Preço	1807,29	1534,64		
LM108A	5962R9863702VGA	JM38510/10104SGA	LM108A	
TID	100Krad	50Krad	25Krad	-
Preço	254,50	157,00	7,90	
AD584	5962R3812801VGA	5962L3812805VGA		
TID	100Krad	50Krad	-	-
Preço	512,00	296,96		
54HC373	920305902F		SNJ54HC373FK	SNJ54AC373J(2)
TID	50Krad	-	20Krad	15Krad
Preço	158,98		32,87	14,49
Res12R 1/2W	RLR20C12R0GS	RLR20C12R0GR	RLR20C12R0GP	RLR20C12R0GM
TID	N/A	N/A	N/A	N/A
Preço	4,10	2,50	0,60	0,30

Tabela 5.1 – Exemplo de dados para os níveis de qualidade e preço dos componentes.

Como pode ser visto na Tabela 5.1 um mesmo componente pode apresentar diferentes níveis de qualidade e preços.

Com exceção dos componentes classificados como nível 1, onde os níveis de qualidade e preços considerados foram os aplicados aos satélites CBERS 3 e 4, para os demais níveis os preços foram obtidos a partir de *"sites"* de empresas especializadas no fornecimento de componentes eletrônicos.

Para efeito de simplificação mas sem perda de generalidade, na validação da metodologia foram considerados apenas os componentes com níveis de radiação (Dose Total Ionizante – TID) igual ou superior a 15 Krad. Esse valor é ligeiramente superior ao especificado para os satélites CBERS 3 e 4 na condição de uso de apenas uma proteção de 2,0mm de alumínio que, em

geral, refere-se a espessura da caixa metálica do equipamento.

A determinação da quantidade de radiação em que o componente eletrônico estará sujeito quando em órbita não é tarefa simples. Para cada componente eletrônico deve ser considerado um conjunto de fatores, tais como espessura das paredes da caixa metálica do equipamento, a localização do equipamento no satélite, as paredes que revestem o satélite, etc. Cada um dos obstáculos existentes entre o nível de radiação externa e a posição do componente contribui para a atenuação da quantidade de radiação que atinge esse componente.

Assim, para determinar a radiação em que o componente estará sujeito, uma análise rigorosa deve ser realizada considerando o nível de radiação que circunda o satélite, a atenuação devido às paredes do próprio equipamento, a atenuação que outros equipamentos posicionados ao seu redor podem proporcionar e a atenuação das paredes que revestem o satélite.

Na literatura é possível encontrar inúmeros trabalhos que abordam o efeito da radiação em componentes eletrônicos e alternativas para mitigar esse efeito. Em geral essa mitigação consiste, ao nível de componentes eletrônicos, no uso de blindagem entorno do componente e circuitos limitadores de corrente para o efeito latch-up (LIDDLEA et al., 2004; ATHANASOPOULOU, 2005; JIANG, 2006). Essas blindagens, em geral, são realizadas com o uso de materiais com alto número atômico, tais como tântalo e tungstênio. Ao nível de sistema, o uso de redundância de equipamentos ou redundância de funções são alternativas para mitigar as falhas provocadas pelo mau funcionamento dos componentes eletrônicos (HAEBEL 2004; ATHANASOPOULOU, 2005). O uso de redundância apresenta o inconveniente de aumentar a massa e consumo e no caso do uso de blindagem nos componentes, essa solução não é muito eficiente para alguns tipos de radiação.

5.2.5 Arquivos de saída de dados

Assim como para a entrada de dados, o Aplicativo também não dispõe de

93

interface gráfica com o usuário para a saída de dados. Os resultados obtidos com a otimização dos objetivos, assim como as coordenadas dos componentes e suas temperaturas são armazenadas e disponibilizados para o usuário em três arquivos do tipo .txt. A escolha em disponibilizar esses dados em arquivos separados tem como objetivo facilitar a manipulação da grande quantidade de dados gerados.

O primeiro arquivo (ArqOut_1) contém todas as soluções não-dominadas e presentes na Fronteira de Pareto. Nesse arquivo, cada ponto da Fronteira, que representa uma solução viável, é representado pelos valores obtidos com a minimização do comprimento total das conexões entre os componentes, da taxa de falhas total para os componentes e o preço total dos componentes além do número da solução que produziu esses resultados. Esses dados permitem ao projetista escolher a melhor solução que atenda aos objetivos do problema. A Figura 5.6 presenta um exemplo de como os dados são armazenados no arquivo ArqOut_1.

Número da Solução	Taxa de falhas total (FIT)	Comprimento total (mm)	Preço Total (U\$)
190.517	201,3621	1.855,0	6.947,17
262.744	203,0412	1.882,0	7.087,74
232.017	401,9476	1.514,0	5.581,97
320.654	602,8862	1.533,0	5.114,07
399.973	823,0290	1.362,0	5.153,61

Figura 5.6 - Exemplo de dados armazenados no Arquivo ArqOut_1

O segundo arquivo de saída de dados (ArqOut_2) contém, para cada solução viável, o número da solução, as coordenadas da posição para cada componente e a temperatura para cada um desses componentes. A Figura 5.7 apresenta os dados armazenados no arquivo ArqOut_2.

Número da Solução	Comp.	Posição xmin	Posição ymin	Posição xmax	Posição ymax	Temp. (°C)
319.018	U1	60,4	110,0	77,2	160,0	64,0
319.018	U3	126,3	121,3	145,6	143,3	73,0
319.018	R37	83,0	143,3	86,9	159,9	64,7
319.018	R40	20,4	167,0	37,0	170,9	55,4

Figura 5.7 – Exemplo de dados armazenados no Arquivo ArqOut_2

O terceiro arquivo (ArqOut_3) contém os níveis de qualidade selecionados para os componentes e o número da solução. Com o uso de uma planilha de dados as informações desses três arquivos de saída podem ser combinados para representar os dados de acordo com a necessidade do projetista. A Figura 5.8 apresenta uma possível combinação para representar os resultados obtidos com a metodologia.

nº da Solução d	Taxa de falhas (FIT)	Compri.) (mm)	Preço (U\$)	Nível de qualidade para os componentes										
				U1	U3	U9	U11	U13	U25	U26	R37	R40	R56	RP ₁
190.517	201,3621	1.855,0	6.947,17	1	2	1	1	1	2	1	1	2	2	1
262.744	203,0412	1.882,0	7.087,74	2	2	1	1	1	1	1	1	1	1	1
320.654	602,8862	1.533,0	5.114,07	2	2	1	2	3	3	2	3	3	2	3
399.973	823,0290	1.362,0	5.153,61	2	2	2	2	2	3	2	3	3	2	2

Figura 5.8 – Exemplo de dados armazenados no Arquivo ArqOut_3

O Aplicativo também disponibiliza arquivos de dados com extensão .dat. Estes arquivos fornecem as temperaturas da PCI e dos componentes. Esses dados são compatíveis com softwares comerciais usados para traçar mapas de contornos 2D, por exemplo, os softwares Grapher e Surfer, ambos da Golden Software (www.goldensoftware.com).

5.3 Fronteira de Pareto

O resultado da otimização com o uso da metodologia é representado pela Fronteira de Pareto. Cada eixo do gráfico tridimensional representa uma das funções objetivo. O especialista poderá escolher, dentre as soluções presentes na Fronteira de Pareto, uma solução que melhor atenda os objetivos do projeto.

5.4 Seqüência de passos do algoritmo implementado

O processo de otimização e busca das melhores soluções candidatas inicia-se com a aquisição das informações das características mecânicas e térmicas da PCI, do conjunto de conexões entre componentes (*"netlist"*), dos parâmetros para cálculo das taxas de falhas e dos preços individuais dos componentes, conforme apresentado na Figura 5.9.

Uma vez adquirido as informações de entrada, a população (seqüência) de L

bits que codificam os N componentes considerados na metodologia é iniciada aleatoriamente. Cada componente é codificado de modo a representar as três características do componente, i.e., a sua posição na PCI, o seu ângulo de rotação e a seleção do seu nível de qualidade. Em seguida, o primeiro bit da seqüência de L bits é mutado gerando K vetores. Os vetores que representam a posição do componente na PCI e o seu ângulo de rotação são usados como dados de entrada para as rotinas responsáveis pelo cálculo da área total de sobreposição (OVLAP), cálculo do comprimento total das conexões (LENGTH) e pelo cálculo da temperatura dos componentes (THANMODAL).

Os valores gerados pelas rotinas e as informações do nível de qualidade selecionado para os componentes são então usados para calcular as três funções objetivo: (i) taxa de falhas total dos componentes (FX1); (ii) preço total dos componentes (FX2); e (iii) comprimento total das conexões entre os componentes (FX3). Ao final, o bit retorna ao seu valor original.

Esse processo se repete L vezes, i.e., até que todos os L bits da seqüência sejam mutados. Em seguida, a aproximação da Fronteira de Pareto é verificada e atualizada para conter apenas as soluções não-dominadas. As soluções não-dominadas são então armazenadas em um arquivo de saída de dados.

O passo seguinte é escolher aleatoriamente uma das funções objetivo e ordenar as espécies (bit) de 1 a L, de acordo com seu valor de aptidão, gerando um conjunto de L pares (b,k), onde b é a posição do bit na seqüência e k é sua ordem. Com probabilidade uniforme, uma espécie é escolhida para mutar. Se $P(k) = k^{-\tau}$, com $k \in \{1, 2, ..., L\}$ é igual ou maior que um número randômico entre [0,1], a espécie é confirmada para sofrer mutação, caso contrário, uma nova espécie é escolhida. Selecionado o bit a ser mutado, o processo continua até que o critério de parada seja atingido. Ao final, tem-se armazenado em arquivos de saída de dados as informações de cada solução não-dominada e respectiva posição para cada componente na PCI além de suas temperaturas e o nível de qualidade para o componente.

Figura 5.9 – Fluxograma com a descrição para a metodologia.

6 TESTES E RESULTADOS

Para avaliar a metodologia proposta neste trabalho foram selecionados como estudo de caso dois projetos de PCA desenvolvidas por um das empresas contratadas para o fornecimento de equipamentos para os satélites do Programa CBERS. As PCAs selecionadas são unidades eletrônicas conhecidas por LTU BAPTA e LTU PSYS. Estas PCAs foram escolhidas por apresentarem as principais características das PCAs desenvolvidas para uso espacial, dentre elas, o uso de tecnologia de montagem PTH (*"Pin Through Hole"*) e SMD (*"Surface Mount Technology"*), uso dos principais tipos de encapsulamentos, uso de *"frames"* como reforço mecânico e auxílio na dissipação de calor e uso de PCIs fabricadas com laminados FR4⁶.

Estas unidades foram desenvolvidas pela empresa fornecedora seguindo o método tradicionalmente empregado nos projetos de PCIs, onde a análise térmica e a análise de confiabilidade são realizadas após a definição e posicionamento dos componentes e o roteamento de suas conexões. Para a realização da análise térmica, apenas os componentes mais dissipativos são considerados. Esta consideração permite além de simplificar o modelo térmico, permite reduzir o tempo necessário para realização da análise, porém sem que haja perda na qualidade dos resultados. No caso das placas LTU BAPTA e LTU PSYS, os componentes considerados na análise térmica foram aqueles que apresentaram dissipação de potência igual ou superior a 10mW.

Na avaliação da eficiência da metodologia, foram adotadas as mesmas aproximações e considerações utilizadas no projeto original das placas. A eficácia da metodologia foi avaliada considerando três Instâncias:

i) A primeira Instância teve como objetivo avaliar o desempenho da metodologia para o posicionamento ótimo dos componentes eletrônicos

⁶ FR4 é a definição técnica dada a um laminado cobreado à base de tecido de vidro e resina epóxi, conforme a norma da National Electrical Manufacturers Association (NEMA). O laminado FR4 é o mais utilizado na fabricação de placas de circuito impresso por apresentar excelentes propriedades elétricas e mecânicas.

mais dissipativos na PCA. Assim como nas demais Instâncias, os mecanismos de transferência de calor considerados foram a condução e a radiação.

Nesta Instância o problema é tratado com uma abordagem bi-objetivo, onde os objetivos a serem otimizados são a taxa de falhas total dos componentes e o comprimento total das conexões entre os componentes. A escolha dos componentes a serem considerados na metodologia seguiu o critério adotado pela empresa contratada onde apenas os componentes com dissipação de potência igual ou superior a 10 mW foram considerados. Para o cálculo da confiabilidade, todos os componentes da PCA foram considerados. Foi empregada a análise de estresse, onde a temperatura de cada componente é levada em consideração para o cálculo de sua taxa de falhas individual. No caso dos componentes que não participaram da análise térmica (<10mW) a temperatura usada foi a temperatura média da PCI obtida na análise térmica.

ii) Na segunda condição, o problema é tratado com uma abordagem multiobjetivo onde os objetivos a serem otimizados, além da taxa de falhas total dos componentes e o comprimento total das conexões entre os componentes, também é considerado o custo total dos componentes a serem utilizados na montagem da PCA. A minimização da taxa de falhas total é influenciada não somente pela redução da temperatura de operação de cada componente como também pela adequada escolha do nível de qualidade destes componentes, enquanto a minimização do custo total dos componentes é influenciada apenas pela seleção adequada do nível de qualidade. Assim, o objetivo desse estudo de caso é avaliar a eficiência da metodologia para o posicionamento e a seleção adequada do nível de qualidade dos componentes. A escolha dos componentes a serem considerados na metodologia também seguiu o critério adotado na primeira Instância, i.e., considera apenas os componentes com dissipação térmica igual ou superior a 10mW.

iii) A terceira Instância difere da segunda quanto a escolha dos componentes a serem considerados na metodologia. Neste caso a escolha é realizada considerando os componentes com maior número de conexões e aqueles que apresentam maiores opções para a redução do custo final. O principal objetivo desta Instância é avaliar a eficiência da metodologia para os casos em que o critério de escolha dos componentes a serem posicionados não se limita apenas aqueles que, dado a natureza do projeto, apresentem valores significativos de dissipação térmica. A Tabela 6.1 apresenta as Instâncias consideradas na avaliação da metodologia.

Características	Instância 1	Instância 2	Instância 3
Funções objetivo:	 taxa de falhas total; comprimento total das conexões. 	 taxa de falhas total; comprimento total das conexões; custo. 	 taxa de falhas total; comprimento total das conexões; custo.
Conjunto de componentes considerados:	- componentes com P _d ≥ 10mW.	- componentes com P _d ≥ 10mW.	 número de conexões entre componentes; que permitam maiores reduções no custo final da PCA, em função de mais opções de escolha dos níveis de qualidade.

Tabela 6.1 – Instâncias consideradas na avaliação das metodologias.

6.1 Estudo de Caso 1 - Unidade eletrônica LTU PSYS

A unidade eletrônica LTU PSYS tem como função realizar a interface elétrica entre o Computador de Controle de Atitude e Órbita (AOCC) e os "*drivers*" de acionamento dos propulsores usados para realizar as manobras do satélite CBERS. A confiabilidade especificada para a unidade eletrônica é 0,9900 para uma missão de 3 anos. Para atender a essa confiabilidade, a taxa de falhas da LTU PSYS deve ser de, no máximo, 382,4328 FIT.

A unidade eletrônica LTU PSYS é composta por 105 componentes, entre circuitos integrados, resistores, capacitores, transistor, diodos, cristal oscilador e conector montados em uma PCI com dimensões de 180x160mm. No

processo de desenvolvimento da PCA a empresa fornecedora empregou o método tradicional para o desenvolvimento, onde a análise térmica é realizada após o posicionamento dos componentes e o roteamento das conexões. Para efeito de simplicidade, o posicionamento realizado pela empresa fornecedora será identificado ao longo do texto como sendo o posicionamento realizado com uso do método tradicional.

Para a análise térmica a empresa considerou os 10 componentes com dissipação igual ou superior a 10 mW, conforme o documento "Mass and Power Analysis - LTU PSYS CBERS 3" (INPE, 2007b). Com o uso da ferramenta Ansys Workbenck v10.0 (www.ansys.com) a empresa obteve as temperaturas para os 10 componentes e a temperatura média da PCI. Essas temperaturas foram então usadas para o cálculo da taxa de falhas individual dos componentes com o uso do método de análise de estresse. Para o cálculo da taxa de falhas dos demais componentes foi considera a temperatura média da PCI.

A Figura 6.1 apresenta um esboço da PCA LTU PSYS projetada pela empresa com o posicionamento e identificação dos 10 componentes mais dissipativos.

Figura 6.1 – PCA LTU PSYS com indicação dos 10 componentes mais dissipativos.

6.1.1 Características dimensionais, térmicas, de confiabilidade e preço dos componentes usados na LTU PSYS

A PCI da LTU PSYS é fabricada com laminado FR-4 de espessura 2,0mm com duas camadas (*"top"* e *"bottom"*) de cobre de 0,35mm de espessura. Durante a análise térmica, a emissividade considerada para a PCI foi de 0,8 e potência total dissipada pelos componentes igual a 0,89W. A temperatura considerada nas laterais da PCI foi de 45°C, que corresponde a temperatura máxima especificada para um painel do satélite⁷.

A Tabela 6.2 apresenta as características dimensionais e térmicas da PCI e na Tabela 6.3 são apresentados os dados de dissipação térmica e resistência térmica entre a junção e o *"case"* dos componentes selecionados. As resistências entre o *"case"* e a PCI são calculadas pelo conjunto de rotinas THANMODAL através dos parâmetros apresentados no Apêndice C.

⁷ Os requisitos de projeto térmico do Programa CBERS (CBERS 3&4, 2008) especifica que a máxima temperatura que pode ocorrer em um painel de fixação de equipamentos é de 45 °C.

Tabela 6.2 – Características dimensionais e térmicas da PCI da LTU PSYS.

Dimensões	Cobre nas	Cond. térmica equivalente	Qtot (W)
L x W (mm)	"layers" (%)	na PCB (W/m ² C)	
180 x 160	35	1,9	0,89

Os 10 componentes selecionados correspondem a aproximadamente 96% da potência total dissipada pela PCA LTU PSYS.

Identificação	Componente	Package	Qmax(W)	Rjc(ºC/W)
U1	80C32	CDIP40	0,066	30,0
U2	54HC373	FPC20	0,010	22,0
U15	54HC373	FPC20	0,010	22,0
U16	AD574A	CDIP28	0,465	28,0
U17	HS-1840RH	FPC28	0,015	22,0
U18	LM108	TO99	0,015	38,0
U19	DCH0515D	DCH0515D	0,142	1,42
R46	Res 5R1 1/4W 2%	RLR07C	0,059	N/A
RAP1	Res 3R1 1/8W 1%	RLR07C	0,036	N/A
R49	Res 5R1 1/2W 2%	RLR20C	0,038	N/A

Tabela 6.3 – Características térmicas dos componentes da PCA LTU PSYS.

Os componentes mais dissipativos são U16 e U19, seguidos pelo U1.

Cada classe de componente possui uma fórmula para o cálculo de sua taxa de falhas, conforme descrito na Tabela 2.2. A Tabela 6.4 apresenta os parâmetros obtidos da norma MIL-HDBK-217F para o cálculo da taxa de falhas.

Componente	λΒ	C1	C2	π_{s}	π_{P}	π_Q	π_{E}	π_L
80C32	-	0,1400	0,0150	-	-	0,25	0,5	1,0
54HC373	-	0,0100	0,0070	-	-	0,25	0,5	1,0
54HC373	-	0,0100	0,0070	-	-	0,25	0,5	1,0
AD574A	-	0,0200	0,0102	-	-	0,25	0,5	1,0
HS-1840RH	-	0,0400	0,0129	-	-	0,25	0,5	1,0
LM108	-	0,0100	0,0020	-	-	0,25	0,5	1,0
DCH0515D	-	0,0200	0,0026	-	-	0,25	0,5	1,0
Res5R1 1/4W	0,0037	-	-	1,74	0,538	0,03	0,5	-
Res3R1 1/8W	0,0037	-	-	0,83	0,274	0,03	0,5	-
Res5R1 1/2W	0,0037	-	-	0,77	0,276	0,03	0,5	-

Tabela 6.4 – Parâmetros para cálculo da taxa de falhas da PCA LTU PSYS.

A Tabela 6.5 apresenta o custo e o nível de qualidade para cada um dos 10 componentes adquiridos para a montagem da PCI.

Identificação	Componente	Part Number	Nível de Radiação*	Preço (U\$)*
U1	80C32	5962-0051801VQC	30Krad	1.807,29
U2	54HC373	920305902F	50Krad	158,98
U15	54HC373	920305902F	50Krad	158,98
U16	AD574A	5962R8512701VXA	100Krad	2.058,69
U17	HS-1840RH	5962F9563002VYC	300Krad	499,95
U18	LM108	5962R9863702VGA	100Krad	254,50
U19	DCH0515D	DCH0515D/ES	20Krad	1.545,00
R46	Res 5R1 1/4W	RLR07C5R10GS	N/A	2,10
RAP1	Res 3R1 1/8W	RLR07C3R10FS	N/A	1,80
R49	Res 5R1 1/2W	RLR20C5R10GS	N/A	4,10

Tabela 6.5 – Custos dos componentes e níveis de qualidade dos componentes usados na montagem da PCA LTU PSYS, método tradicional.

*Preços e níveis de qualidade dos componentes adquiridos para o Programa CBERS.

6.1.2 Resultados para LTU PSYS com o uso do método tradicional.

Para efeito comparativo o posicionamento proposto pelo método tradicional para os 10 componentes mais dissipativos foi avaliado aplicando as mesmas rotinas usadas na metodologia. O valor obtido para o comprimento total das conexões foi de 3.641mm com taxa de falhas total de 78,1513 FIT ao custo de U\$ 6.491,39. Este valor representa 56,8% do custo de todos os componentes da PCA LTU PSYS. A Tabela 6.6 apresenta as temperaturas obtidas para os componentes e para a PCI.

Componente	Tj(ºC)	Tcase(ºC)	T _{av} board(⁰C)	λ_{p} (FIT)
U1	59,7	49,1	46,6	16,3665
U2	51,9	49,1	44,7	1,6485
U15	52,5	49,6	45,5	1,6642
U16	84,9	61,7	61,1	35,9031
U17	51,8	47,6	45,1	9,6812
U18	55,1	49,8	49,3	2,8000
U19	64,5	64,4	51,4	9,9798
R46	-	63,3	54,3	0,0739
RAP1	-	63,1	54,2	0,0179
R49	-	57,9	52,3	0,0161

Tabela 6.6 – T	Temperatura	dos comp	onentes da	LTU PSYS,	método tra	adicional.
----------------	-------------	----------	------------	-----------	------------	------------

Os dados da Tabela 6.6 mostram que nenhum dos componentes excedeu a temperatura de junção (Tj) máxima especificada para o projeto da PCA (100°C). Com exceção do componente U16, que dissipa 52,2% de toda a potência dissipada pela PCA, nenhum componente apresentou temperatura de

junção superior a 65ºC. A baixa potência total dissipada pela PCA (0,89W) resultou em uma temperatura média da PCI de 50,4ºC.

Figura 6.2 – Mapa de distribuição de temperatura na PCI LTU PSYS, método tradicional.

O mapa de distribuição de temperatura não apresentou pontos com altas temperaturas ("*hot spots*"). A temperatura média obtida para a PCI foi utilizada para o cálculo da taxa de falhas dos demais componentes. A Tabela 6.7 apresenta a taxa de falhas total para os 105 componentes da PCA LTU PSYS.

Família de Componentes	Taxa Falhas (FIT)	% do total Taxa Falhas	Custo (US\$)	% do custo total	Número de componentes
Circuitos Integrados	94,4478	75,80	9.979,16	87,5	18
Conector	18,3400	14,72	33,42	0,3	1
Cristal	10,5000	8,43	702,16	6,2	1
Transistor	1,1166	0,90	60,57	0,5	1
Diodos	0,1707	0,14	180,24	1,6	4
Resistores	0,0003	0,00	80,30	0,7	43
Capacitores	0,0319	0,03	373,68	3,3	37
TOTAL	128,6370	100,0	11.409,53	100,0	105

Tabela 6.7 – Taxa de falhas total calculada para a PCA LTU PSYS, método tradicional.

Os circuitos integrados representam 75,8% do total da taxa de falhas enquanto os capacitores, com 37 unidades, representam apenas 0,03% do total da taxa de falhas. A confiabilidade para a PCA LTU PSYS, para uma missão de três

anos, calculada a partir das taxas de falhas apresentada na Tabela 6.7 é igual a 0,9966 o que atende plenamente o requisito de confiabilidade requerida.

6.1.3 Resultados com o uso da metodologia multiobjetivo – Instância 1

Para a implementação da metodologia cada variável de projeto (X) que representa o componente foi codificada em 18 bits dos quais, dois deles representam a rotação do componente e os 16 bits restantes representam a coordenada central de posicionamento do componente na PCI. A seqüência de bits que codificam os 10 componentes $[F_1(X), F_2(X) \dots F_{17}(X)]$ é representada por 180 bits (10 componentes x 18 bits).

Para a seleção do valor do parâmetro " τ ", vários testes foram realizados. Os melhores resultados foram obtidos com o parâmetro " τ " igual a 5,0. O número de avaliações para a seqüência de bits F(X) foi de 195 execuções, com 10 inicializações independentes. O número total de soluções foi limitado a 350.000 soluções.

A rotina que implementa a metodologa foi executada em um notebook Sony Vaio® com processador Intel Core 2 Duo T6600@2.2GHz e 4GB de memória RAM. O tempo necessário para obter as 350.000 soluções candidatas foi de aproximadamente 43 horas. A maior parte do tempo de execução do algoritmo é usada para o cálculo das sobreposições entre componentes ou entre componentes e "frame".

Das 350.000 soluções candidatas geradas pelo M-GEO, 213.176 soluções eram soluções viáveis, representando 60,9%. Após a aplicação do conceito de dominância nas soluções viáveis, obteve-se um conjunto de 229 soluções nãodominadas com melhora em todos os objetivos em relação à solução obtida com o método tradicional. A Figura 6.3 apresenta a Fronteira de Pareto obtida.

Figura 6.3 – Fronteira de Pareto obtida para a PCA LTU PSYS, Instância 1.

A Fronteira de Pareto apresentou boa diversidade com soluções nãodominadas espalhadas ao longo da Fronteira. Os resultados obtidos mostraram melhoras significativas, tanto para o comprimento total das conexões quanto para a taxa de falhas total quando comparado com os resultados obtidos pelo método tradicional. De fato, a solução obtida pelo método tradicional é uma solução dominada pelas soluções obtidas pela abordagem multiobjetivo. A Tabela 6.8 apresenta o resultado da comparação entre os valores dos extremos da Fronteira de Pareto obtido pelo M-GEO e o método tradicional.

	Preferência na otimização da Taxa de Falhas			Preferência na otimização do comprimento das conexões		
Número da Solucão		Comprimento conexões (mm)	Taxa de Falhas (FIT)	Número da Solução	Comprimento conexões (mm)	Taxa de Falhas (FIT)
M-GEO	153.448	3.365,0	67,1625	157.067	1.493,0	75,4288
Método Tradicional	-	3.641,0	78.1513	-	3.641,0	78,1513

Tabela 6.8 – Valores dos extremos da Fronteira de Pareto obtidos para a LTU PSYS com uso do algoritmo M-GEO, Instância 1.

A melhor solução obtida para a preferência na otimização da taxa de falhas apresentou taxa de falhas total igual a 67,1625 FIT e comprimento total das conexões de 3.365mm. Neste caso, a metodologia proporcionou a redução de 7,6% no comprimento total das conexões e redução de 14,1% na taxa de

falhas total.

A melhor solução para a otimização do comprimento total das conexões apresentou como resultado para a taxa de falhas total o valor de 75,4288 FIT e comprimento total das conexões de 1.493mm. Embora a metodologia tenha proporcionado redução de apenas 3,5% na taxa de falhas total, houve redução de 59,0% no comprimento das conexões.

Cabe mencionar que embora tenham sido analisadas as soluções presentes nos extremos da Fronteira, pois representam as melhores soluções individualmente para cada função objetivo, observa-se que na região central daquela existem soluções que apresentam grande ganho para uma das funcoes objetivo com pouca perda para a outra, i.e., elas podem representar as melhores relações de compromisso para a implementação do projeto. De fato, a escolha da solução a ser implementada requer o emprego de técnicas específicas para a tomada de decisão, assunto este que não é escopo desta Tese.

Com exceção do U2 e U17, o posicionamento dos componentes proposto pela metodologia proporcionou a redução das Tj de todos os componentes favorecendo a diminuição de suas taxas de falhas individuais. A Figura 6.4 apresenta o posicionamento proposto na solução 153.448 para a preferência na otimização da taxa de falhas total e a Figura 6.5 apresenta o posicionamento obtido pelo método tradicional.

Figura 6.4 – Posicionamento para PCA LTU PSYS, M-GEO, Instância 1 (sol. 153.448).

Figura 6.5 – Posicionamento para PCA LTU PSYS, método tradicional.

Observa-se que a posição dos componentes próximos ao "*frame*" da PCA e em diferentes quadrantes favoreceu a redução de suas Tj. A Tabela 6.9 apresenta a temperatura e taxa de falhas para cada componente.

Componente	Tj(ºC)	Tcase(ºC)	T _{av} board(⁰C)	$λ_p$ (FIT)
U1	59,6	49,0	46,5	16,1649
U2	52,2	49,4	45,3	1,6389
U15	52,4	49,6	45,4	1,6455
U16	79,6	56,3	55,7	26,1324
U17	52,0	47,8	45,5	9,7176
U18	51,8	46,5	46,0	2,2445
U19	62,5	62,4	47,4	8,6999
R46	-	58,9	49,9	0,0714
RAP1	-	57,8	48,7	0,0172
R49	-	54,0	48,2	0,0156

Tabela 6.9 – Temperatura dos componentes para a PCA LTU PSYS considerados na Instância 1 (sol. 153.448).

O posicionamento obtido na solução permitiu a diminuição da temperatura média da PCI para 46,4°C. Essa diminuição representa, em relação ao método tradicional, uma redução de 7,9%. A temperatura média da PCI é usada para calcular as taxas de falhas individuais dos demais componentes não relacionados no processo de posicionamento. Nesse caso, considerando a

temperatura média igual a 46,4°C, a taxa de falhas total para os 105 componentes da PCA LTU PSYS é de 114,6439 FIT, que corresponde a uma redução de 10,9% quando comparado com o posicionamento obtido pelo método tradicional. Vale ressaltar que o cálculo da taxa de falhas total da PCA LTU PSYS, considerando todos os 105 componentes foi realizado a posteriori e externamente ao processo de execução da metodologia. Os valores dos parâmetros para o cálculo da taxa de falhas de cada componente foram introduzidos em uma planilha Excel® e as únicas variáveis de entrada são as temperaturas de cada componente considerado no processo de posicionamento e a temperatura média da PCI. A Figura 6.6 apresenta o mapa de distribuição de temperaturas na PCI.

Figura 6.6 – Mapa de distribuição de temperatura na PCI LTU PSYS, Instância 1 (sol. 153.448).

A melhor solução obtida para a otimização do comprimento total das conexões foi a solução 157.067 que apresentou como resultado para a taxa de falhas total o valor de 75,4288 FIT e comprimento total das conexões de 1.493mm. A Figura 6.7 apresenta o posicionamento proposto na solução.

Figura 6.7 – Posicionamento para PCA LTU PSYS, M-GEO, Instância 1 (sol. 157.067).

Figura 6.8 – Posicionamento da LTU PSYS, método tradicional.

Observa-se que para a otimização do comprimento total das conexões o posicionamento proposto concentrou praticamente todos os componentes em um dos quadrantes da PCI provocando o aumento de suas Tj. Com este posicionamento a temperatura média da PCI também subiu para 46,7°C quando comparado com a solução 153.448. Com isso, a taxa de falhas total de todos os componentes da PCA LTU PSYS também subiu para 123,9492 FIT. A Tabela 6.10 apresenta a temperatura e taxa de falhas individuais para os componentes obtidos no posicionamento proposto na solução 157.067.

Componente	Tj(ºC)	Tcase(ºC)	T _{av} board(^⁰ C)	$λ_p$ (FIT)
U1	60,9	50,4	48,0	17,0423
U2	54,6	51,8	51,3	1,7330
U15	54,7	51,9	50,9	1,7364
U16	81,8	58,6	58,0	30,1196
U17	55,3	51,1	51,1	11,9822
U18	58,3	53,1	52,5	3,4398
U19	63,3	63,2	49,0	9,2751
R46	-	63,1	54,1	0,0731
RAP1	-	61,7	52,8	0,0180
R49	-	51,7	45,8	0,0152

Tabela 6.10 – Temperatura dos componentes para a PCA LTU PSYS considerados na Instância 1 (sol. 157.067).
Embora a taxa de falhas total para a solução 157.067 tenha aumentado em relação a solução 153.448, a solução proporcionou redução de 3,6% quando comparada ao método tradicional. A Figura 6.9 apresenta o mapa de distribuição de temperaturas na PCI para a solução 157.067.

Figura 6.9 – Mapa de distribuição de temperatura da PCI LTU PSYS, Instância 1 (sol. 157.067)

6.1.4 Resultados com uso da metodologia multiobjetivo LTU PSYS – Instância 2

Para a Instância 2, além da taxa de falhas total dos componentes e do comprimento total das conexões entre os componentes, o custo dos componentes também foi considerado. Vale ressaltar que o custo está diretamente relacionado com o nível de qualidade dos componentes. Para a implementação da metodologia foram considerados os níveis de qualidade e preços dos componentes descritos na Tabela 6.11.

Na implementação do algoritmo cada variável de projeto (X), que representa o componente, foi codificada em 20 bits, dos quais, dois deles representam a rotação do componente, dois representam a seleção do nível de qualidade do componente e os 16 bits restantes representam a coordenada central de posicionamento do componente na PCI. A seqüência de bits que codificam os 10 componentes é representada por 200 bits (10 componentes x 20 bits). O

valor selecionado para o parâmetro " τ " foi igual a 5.0. O número de avaliações para a seqüência de bits F(X) foi limitado em 118 execuções, com 10 inicializações independentes. O número de soluções foi de 236.000 soluções candidatas.

Componente	Preço dos com	de qualidade		
Componente	Nível 1	Nível 2	Nível 3	Nível 4
80C32	5962-0051801VQC	5962-0051801QQC		
TID	30Krad	30Krad	-	-
Preço	1.807,29	1.534,64		
Especificação:	5962R8512701VXA			
TID:	100Krad	-	-	-
AD574	2.058,69			
Especificação:	5962F9563002VYC			
TID:	300Krad	-	-	-
HS-1840RH	499,95			
LM108A	5962R9863702VGA	JM38510/10104SGA	LM108A	
TID	100Krad	50Krad	25Krad	-
Preço	254,50	157,00	7,90	
Especificação:	5962R8512701VXA			
TID:	100Krad	-	-	-
AD574	2.058,69			
Especificação:	DCH0515D/ES			
TID:	20Krad	-	-	-
DCH0515D/ES	1.545,00			
54HC373	920305902F		SNJ54HC373FK	SNJ54AC373J(2)
TID	50Krad	-	20Krad	15Krad
Preço	158,98		32,87	14,49
Res 5R1 1/4W 2%	RLR07C5R10GS	RLR07C5R10GR	RLR07C5R10GP	RLR07C5R10GM
TID	N/A	N/A	N/A	N/A
Preço	2,10	1,20	0,30	0,20
Res 3R1 1/8W 1%	RLR07C3R10FS	RLR07C3R10FR	RLR07C3R10FP	RLR07C3R10FM
	N/A	N/A	N/A	N/A
Preço	1,80	1,10	0,30	0,20
Especificação:	RLR20C5R10GS	RLR20C5R10GR	KLR20C5R10GP	RLR20C5R10GM
	N/A	N/A	N/A	N/A
Kes 5K1 1/2W 2%	4,10	2,5	0,6	0,3

Tabela 6.11 – Preço e níveis de qualidade dos componentes considerados na avaliação da metodologia para a PCA LTU PSYS, considerando a Instância 2.

Na metodologia quando o nível de qualidade selecionado para um determinado componente não existir, um valor muito alto para a taxa de falhas e para o custo são atribuídos. Dessa forma, estas soluções são penalizadas ao longo da busca.

Das 236.000 soluções geradas, 119.048 soluções são viáveis, representando 50,4% do total. A sobreposição entre os componentes ou entre componentes e

"frame" é a principal causa do elevado número de soluções não viáveis. De fato, já era esperado esse elevado número de soluções inviáveis devido a natureza do problema, onde o posicionamento dos componentes é livre e pode ocupar qualquer lugar dentro dos limites da PCI. Após a aplicação do conceito de dominância nas soluções geradas pela metodologia, obteve-se um conjunto de 506 soluções não-dominadas das quais 463 soluções dominam a solução obtida pelo método tradicional.

A Figura 6.10 apresenta a Fronteira de Pareto obtida e o resultado para o posicionamento utilizando o método tradicional. O tamanho das "bolhas" representam os valores obtidos na otimização do comprimento das conexões.

Figura 6.10 – Fronteira de Pareto obtida com uso do algoritmo M-GEO para a PCA LTU PSYS, Instância 2.

A Tabela 6.12 apresenta algumas das 463 soluções não-dominadas obtidas para a LTU PSYS com as taxas de falhas, comprimento e custo total para os 10 componentes além dos respectivos níveis de qualidade e os valores para a solução obtida pelo método tradicional.

Solução	Taxa de	Compri,	Preço		Níve	l de qu	alidade	dos c	ompon	entes s	selecio	nados	
Solução	falhas (Fit)	(mm)	(U\$)	U1	U2	U15	U16	U17	U18	U19	R46	RAP_1	R49
7.336	70,7643	3.181	6.485,19	1	1	1	1	1	1	1	2	3	4
13.672	71,4092	2.680	6.485,19	1	1	1	1	1	1	1	2	3	4
22.866	75,0334	2.539	6.484,09	1	1	1	1	1	1	1	4	4	4
14.209	99,8922	2.674	6.112,48	1	3	1	1	1	3	1	2	3	4
14.568	160,8773	2.682	5.713,72	2	3	3	1	1	3	1	2	3	4
14.628	214,3203	3.174	5.695,34	2	4	3	1	1	3	1	2	3	4
18.648	230,6459	2.499	5.694,24	2	4	3	1	1	3	1	4	4	4
221.867	270,7928	2.109	5.824,96	2	4	4	1	1	2	1	4	4	4
18.649	287,7652	2.504	5.675,86	2	4	4	1	1	3	1	4	4	4
233.829	289,3526	1.799	5.824,96	2	4	4	1	1	2	1	4	4	4
Método Trad.	78,1745	3.760	6.491,39	1	1	1	1	1	1	1	1	1	1

Tabela 6.12 – Algumas das soluções viáveis obtidas pelo algoritmo M-GEO para a PCA LTU PSYS, Instância 2.

A melhor solução obtida para a preferência na otimização da taxa de falhas foi a solução 7.336 que apresentou taxa de falhas total igual a 70,7643 FIT com comprimento total das conexões de 3.181mm ao custo total de U\$ 6.485,19.

Embora a redução no custo dos componentes tenha sido de apenas de 0,1%, houve redução de 9,5% na taxa total de falhas e de 15,4% no comprimento total das conexões. A Tabela 6.13 apresenta os custos e o nível de qualidade dos componentes selecionados na solução 7.336.

Tabela 6.13 – Custo	e nível de qualidade para os	componentes da PCA LTU
PSYS	considerados na Instância 2	(sol. 7.336).

Identificação	Componente	Part Number	Nível de Radiação*	Preço (U\$)*
U1	80C32	5962-0051801VQC	30Krad	1.807,29
U2	54HC373	920305902F	50Krad	158,98
U15	54HC373	920305902F	50Krad	158,98
U16	AD574A	5962R8512701VXA	100Krad	2.058,69
U17	HS-1840RH	5962F9563002VYC	300Krad	499,95
U18	LM108	5962R9863702VGA	100Krad	254,5
U19	DCH0515D	DCH0515D/ES	20Krad	1.545,00
R46	Res 5R1 1/4W	RLR07C5R10GR	N/A	1,2
RAP1	Res 3R1 1/8W	RLR07C3R10FP	N/A	0,3
R49	Res 5R1 1/2W	RLR20C5R10GM	N/A	0,3

Na Tabela 6.14 é possível observar que a metodologia proporcionou a redução das Tj para a maioria dos componentes favorecendo a diminuição das taxas de falhas individuais.

Componente	Tj(ºC)	Tcase(ºC)	T _{av} board(⁰C)	$λ_p$ (FIT)
U1	59.9	49.4	46.9	16,4994
U2	52.9	50.1	47.0	1,6767
U15	53.1	50.3	47.0	1,6833
U16	81.2	57.9	57.3	28,9800
U17	51.8	47.6	45.0	9,6638
U18	53.3	48.1	47.5	2,4993
U19	62.6	62.4	47.6	8,8429
R46	-	57.7	48.6	0,2356
RAP1	-	57.6	48.6	0,1716
R49	-	52.7	46.9	0,5125

Tabela 6.14 – Temperatura e taxa de falhas para os componentes da PCA LTU PSYS considerado na Instância 2 (sol. 7.336).

A temperatura média da PCI obtida com a solução 7.336 foi de 46,6°C, que corresponde a uma redução de 7,5% quando comparado com o método tradicional. Como essa temperatura é usada para calcular as taxa de falhas individuais dos demais componentes não relacionados no processo de posicionamento, essa redução também contribuiu para a redução da taxa de falhas total da PCA. A Figura 6.11 apresenta o mapa de distribuição de temperaturas na PCI.

Figura 6.11 – Mapa de distribuição de temperatura na PCI LTU PSYS, Instância 2, (sol. 7.336).

Se forem considerados as temperaturas e os níveis de qualidade selecionados

obtidos na solução 7.336 (para os 10 componentes) e para os demais componentes forem considerados os níveis de gualidade usados no projeto original (nível 1), e a temperatura média da PCI, a redução na taxa de falhas total da PCA LTU PSYS será de 8,0% porém sem redução significativa (0,1%) no custo total dos componentes. A Tabela 6.15 apresenta a taxa de falhas considerando essa situação.

Tabela 6.15 – Taxa de falhas total calculada para a PCA LTU PSYS, Instância 2 (sol. 7.336).

Família de Componentes	Taxa Falhas (FIT)	% do total da taxa de falhas	Custo (US\$)	% de redução no custo(*)
Circuitos Integrados	87,4112	73,84	9.979,16	-
Conector	18,3400	15,49	33,42	-
Cristal	10,5000	8,87	702,16	-
Transistor	1,0331	0,87	60,57	-
Diodos	0,1524	0,13	180,24	-
Resistores	0,9200	0,78	74,10	0,65
Capacitores	0,0277	0,02	373,68	-
TOTAL (*) em relação ao mét	118,3845 todo tradicional	100,0	11.403,33	0,10

A Figura 6.12 e a Figura 6.13 apresentam o posicionamento proposto na solução 7.336 e para a solução obtida pelo método tradicional.

Figura 6.12 - Posicionamento para PCA LTU PSYS, Figura 6.13 - Posicionamento para PCA LTU PSYS, M-GEO, Instância 1 (sol. 7.336).

método tradicional.

Para atender ao requisito de confiabilidade para uma missão de 3 anos, a PCA LTU PSYS deve apresentar uma taxa de falhas total de 382,4328 FIT. Se for considerado o posicionamento e a seleção para os 10 componentes proposto na solução 233.829 por exemplo, e para os demais componentes forem utilizados os mesmos níveis de qualidade do método tradicional (nível 1), a taxa de falhas total para todos os componentes da PCA LTU PSYS será de 337,6881 FIT com comprimento total das conexões de 1799mm ao custo de U\$ 10.743,10. Nesse caso, o requisito de confiabilidade para a PCA LTU PSYS seria atendido com redução de 5,8% no custo total dos componentes e de 52,2% no comprimento total das conexões quando comparado com o método tradicional.

Os resultados analisados mostraram que, embora a PCA LTU PSYS apresente componentes com baixa dissipação de potência, a metodologia forneceu soluções que permitiram a redução de todos os objetivos.

6.2 Estudo de Caso 2 - Unidade eletrônica LTU BAPTA

Neste estudo de caso a unidade selecionada foi a PCA LTU BAPTA que dissipa três vezes mais potência do que o estudo de caso anterior. A unidade eletrônica LTU BAPTA tem como função realizar a interface elétrica entre o Computador de Controle de Atitude e Órbita (AOCC) e o "*driver*" de potência que aciona o motor responsável pelo movimento do painel solar (Solar Array Generator - SAG) do Satélite CBERS 3. A interface elétrica é formada por duas unidades eletrônicas LTU BAPTA operando com redundância paralela fria i.e., apenas uma das unidades está em operação e em caso de falha, a outra unidade é acionada e a primeira é desligada. A especificação para a confiabilidade de cada unidade eletrônica é 0,9900 para uma missão de 3 anos. Para atender a essa confiabilidade, a taxa de falhas da LTU BAPTA deve ser de, no máximo, 382,4328 FIT.

Cada unidade eletrônica é composta por 155 componentes, entre circuitos integrados, resistores, capacitores, transistor, diodos, cristal oscilador e

119

conector montados em uma PCI com dimensão de 175x170mm. Assim como na PCA LTU PSYS, o desenvolvimento seguiu o método tradicional.

Para a análise térmica a empresa considerou os 17 componentes com dissipação igual ou superior a 10mW, conforme o documento "Mass and Power Analysis - LTU BAPTA CBERS 3" (INPE, 2007a). Com o uso da ferramenta Ansys Workbenck v10.0 (www.ansys.com) a empresa obteve as temperaturas para os 17 componentes e a temperatura média da PCI. Essas temperaturas foram usadas para o cálculo da taxa de falhas individual dos componentes com o uso do método de análise de estresse. O cálculo da taxa de falhas dos demais componentes considera a temperatura média da PCI.

A Figura 6.14 apresenta um esboço da PCA LTU BAPTA projetada pela empresa com o posicionamento e identificação dos 17 componentes mais dissipativos.

Figura 6.14 – PCA LTU BAPTA com indicação dos 17 componentes mais dissipativos.

Dentre os componentes identificados na Figura 6.14 os mais dissipativos são os circuitos integrados U9 e U19, seguido pelo U3.

6.2.1 Características dimensionais, térmicas, de confiabilidade e preço dos componentes usados na LTU BAPTA

A PCI da LTU BAPTA é fabricada com laminado FR-4 de espessura 2mm com duas camadas (top e bottom) de cobre de 0,35mm de espessura. Durante a análise térmica, a emissividade considerada pela empresa para a PCI foi de 0,8 e potência total dissipada de 2,75W. Assim como para a LTU BAPTA, a temperatura considerada nas laterais da PCI foi 45°C. Os 17 componentes selecionados correspondem a aproximadamente 40% da potência total dissipada pela LTU BAPTA.

A Tabela 6.16 apresenta as características dimensionais e térmicas da PCI. Na Tabela 6.17 são apresentados os dados de dissipação térmica e resistência de junção dos 17 componentes selecionados.

Dimensões	Cobre nos	Cond. Térmica equivalente	Qtot (W)
L x W (mm)	"layers" (%)	na PCI (W/mºC)	
175 x 170	31	1,9	2,75

	Tabela 6.16 -	Características	dimensional e	térmica da	PCI da LTU BAPTA.
--	---------------	-----------------	---------------	------------	-------------------

Identificação	Componente	Package	Qmax(W)	Rjc(ºC/W)
U1	80C32	CDIP40	0,066	30,0
U3	UT28F256QLT	FPC28	0,168	3,3
U9	HS565BRH	FPC24	0,316	15,0
U10	LM139	FPC14	0,012	95,0
U13	LM108	TO99	0,014	38,0
U14	LM108	TO99	0,014	38,0
U19	HS565BRH	FPC24	0,316	15,0
U22	LM108	TO99	0,014	38,0
U23	LM108	TO99	0,014	38,0
U25	AD584	TO99	0,012	8,0
U26	LM117	TO99	0,026	21,0
R37	Res 200K	RLR05C	0,018	N/A
R40	Res 200K	RLR05C	0,018	N/A
R56	Res 5R1	RLR07C	0,051	N/A
RAP1	Res 3R1	RLR07C	0,031	N/A
R57	Res 12R	RLR20C	0,011	N/A
R58	Res 12R	RLR20C	0,012	N/A

Tabela 0.17 - 0alactellolicao tellicao dos componentes da LTO DALTA

Na Tabela 6.18 são apresentados os parâmetros obtidos da norma

MIL-HDBK-217F e utilizados para o cálculo das taxas de falhas.

Componente	λΒ	C1	C2	π_{s}	π_{P}	π_{Q}	π_{E}	π_L
80C32	-	0,1400	0,0150	-	-	0,25	0,5	1,0
UT28F256QLT	-	0,0068	0,0130	-	-	0,25	0,5	1,0
HS565BRH	-	0,0200	0,0013	-	-	0,25	0,5	1,0
LM139	-	0,0100	0,0037	-	-	0,25	0,5	1,0
LM108	-	0,0100	0,0020	-	-	0,25	0,5	1,0
LM108	-	0,0100	0,0020	-	-	0,25	0,5	1,0
HS565BRH	-	0,0200	0,0087	-	-	0,25	0,5	1,0
LM108	-	0,0100	0,0020	-	-	0,25	0,5	1,0
LM108	-	0,0100	0,0020	-	-	0,25	0,5	1,0
AD584	-	0,0100	0,0079	-	-	0,25	0,5	1,0
LM117	-	0,0100	0,0020	-	-	0,25	0,5	1,0
Res 200K	0,0037	-	-	0,71	0,057	0,03	0,5	-
Res 200K	0,0037	-	-	0,71	0,057	0,03	0,5	-
Res 5R1	0,0037	-	-	0,71	0,056	0,03	0,5	-
Res 3R1	0,0037	-	-	0,93	0,056	0,03	0,5	-
Res 12R	0,0037	-	-	0,74	0,214	0,03	0,5	-
Res 12R	0,0037	-	-	0,73	0,171	0,03	0,5	-

Tabela 6.18 – Parâmetros para cálculo das taxas de falhas para a LTU BAPTA.

A Tabela 6.19 apresenta o custo e o nível de qualidade para cada um dos 17 componentes adquiridos para a montagem da PCI.

Tabela 6.19 – Custos dos componentes e níveis de qualidade dos componentes usados na montagem da LTU BAPTA, método tradicional.

Identificação	Componente	Part Number	Nível de Radiação*	Preço (U\$)*
U1	80C32	5962-0051801VQC	30Krad	1.807,29
U3	UT28F256QLT	5962R9689110VXC	300Krad	2.227,90
U9	HS565BRH	5962R9675502VXC	100Krad	791,50
U10	LM139	5962R9673801VDA	100Krad	267,85
U13	LM108	5962R9863702VGA	100Krad	254,50
U14	LM108	5962R9863702VGA	100Krad	254,50
U19	HS565BRH	5962R9675502VXC	100Krad	791,50
U22	LM108	5962R9863702VGA	100Krad	254,50
U23	LM108	5962R9863702VGA	100Krad	254,50
U25	AD584	5962R3812801VGA	100Krad	512,00
U26	LM117	5962R9951703VXA	100Krad	369,58
R37	Res 200K	RLR05C2003GS	N/A	1,80
R40	Res 200K	RLR05C2003GS	N/A	1,80
R56	Res 5R1	RLR07C5R10GS	N/A	2,10
RAP1	Res 3R1	RLR07C3R10FS	N/A	2,10
R57	Res 12R	RLR20C12R0GS	N/A	4,10
R58	Res 12R	RLR20C12R0GS	N/A	4,10

*Preços e níveis de qualidade dos componentes adquiridos para o Programa CBERS

6.2.2 Resultados com o uso do método tradicional – Instância 1

Assim como no estudo de caso anterior, para permitir a comparação com a metodologia os valores para a taxa de falhas total, o custo total dos componentes e o comprimento total das conexões obtidas com o posicionamento realizado pela empresa fornecedora foram calculados usando as mesmas rotinas usadas na metodologia.

O valor obtido para o comprimento total das conexões foi de 1923mm com taxa de falhas total de 214,6884 FIT ao custo de U\$ 7.801,62. Este valor representa 67,8% do custo de todos os componentes da PCA LTU BAPTA. A Tabela 6.20 apresenta as temperaturas obtidas para os componentes e para a PCI.

Componente	Tj(ºC)	Tcase(ºC)	T _{av} board(^o C)	λ_p (FITs)
U1	63,9	58,6	58,7	18,7297
U3	72,7	72,3	72,2	5,8952
U9	99,9	95,7	94,2	80,9077
U10	62,6	56,4	56,4	4,7247
U13	69,3	67,6	67,6	6,8728
U14	62,1	60,8	59,7	4,3633
U19	98,9	94,8	92,7	77,6631
U22	65,9	64,9	64,8	5,5670
U23	62,4	61,3	59,0	4,4605
U25	74,8	73,4	73,5	2,7483
U26	64,7	61,7	55,2	2,7191
R37	-	72,8	61,2	0,0034
R40	-	71,8	59,7	0,0034
R56	-	78,3	67,4	0,0035
RAP1	-	68,4	66,3	0,0043
R57	-	61,7	50,0	0,0124
R58	-	65,7	57,7	0,0101

Tabela 6.20 – Temperatura dos componentes da LTU BAPTA, método tradicional.

Analisando os dados da Tabela 6.20, observa-se que nenhum componente apresentou temperatura de junção (Tj) maior do que 100°C. Os componentes U9 e U19 foram os que apresentaram as maiores Tj. Além da elevada potência dissipada por esses componentes o outro fator que contribuiu para o aumento das Tj foi o posicionamento. No mesmo quadrante em que se encontram esses componentes, então outros cinco componentes com dissipações térmicas maiores que 10mW. No total, esse quadrante responde por 46% de toda a potência dissipada pela placa. O posicionamento do U9, mais próximo ao *"frame*", contribuiu para que sua Tj fosse ligeiramente menor que o U19.

O componente U3 mesmo dissipando 168mW apresenta Tj em torno de 73°C. Os fatores que contribuíram para essa temperatura foram a sua baixa resistência térmica de junção (Rjc=3.3°C/W) e por estar posicionado em um quadrante sem nenhum outro componente dissipativo.

A Figura 6.15 apresenta o mapa de distribuição de temperaturas na PCA e a identificação dos componentes mais dissipativos.

Figura 6.15 – Mapa de distribuição de temperatura na LTU BAPTA, método tradicional.

A temperatura média obtida para a PCA LTU BAPTA e considerada para o cálculo das taxas de falhas dos demais componentes foi de 62.8°C.

Com essa temperatura, a taxa de falhas total calculada para os 155 componentes da LTU BAPTA é apresentada na Tabela 6.21.

Família de Componentes	Taxa Falhas (FIT)	% do total de falhas	Custo (US\$)	% do custo total	Número de componentes
Circuitos Integrados	256,1875	89,06	9.887,09	85,9	25
Conector	18,3400	6,38	33,42	0,3	1
Cristal	10,5000	3,65	702,16	6,1	1
Transistor	1,4217	0,49	60,57	0,5	1
Diodos	0,6077	0,21	450,60	3,9	10
Resistores	0,5258	0,18	122,10	1,1	62
Capacitores	0,0790	0,03	257,01	2,2	55
TOTAL	287,6616	100,0	11.512,95	100,0	155

Tabela 6.21 – Taxa de falhas total calculada para a LTU BAPTA, método tradicional

Os circuitos integrados representam 89,1% do total da taxa de falhas enquanto os capacitores, com 55 unidades, representam menos de 0,03% do total de falhas. A confiabilidade para a PCA LTU BAPTA para uma missão de três anos, calculada a partir das taxas de falhas apresentada na Tabela 6.21 é igual a 0,9925 o que atende plenamente o requisito de confiabilidade requerida.

6.2.3 Resultados com o uso da metodologia multiobjetivo – Instância 1

Para a implementação da metodologia cada variável de projeto (X) que representa o componente foi codificada em 18 bits dos quais, dois deles representam a rotação do componente e os 16 bits restantes representam a coordenada central de posicionamento do componente na PCI. A seqüência de bits que codificam os 17 componentes $[F_1(X), F_2(X) \dots F_{17}(X)]$ é representada por 306 bits (17 componentes x 18 bits).

O valor selecionado para o parâmetro " τ " foi igual a 5.0. O número de avaliações para a seqüência de bits F(X) foi limitado em 115 execuções, com 10 inicializações independentes. O número total de soluções foi limitado a 350.000 soluções.

Das 350.000 soluções candidatas geradas pelo algoritmo, 254.527 soluções eram soluções viáveis, representando 72,7%. Após a aplicação do conceito de dominância, obteve-se um conjunto de 229 soluções não-dominadas com melhora em todos os objetivos em relação à solução obtida com o método tradicional. A Figura 6.16 apresenta a Fronteira de Pareto obtida.

A metodologia foi executada com o mesmo recurso computacional anterior. O tempo necessário para obter as 350.000 soluções candidatas foi de aproximadamente 69 horas. Assim como na Instância anterior, maior parte do tempo de execução é usada para o cálculo das sobreposições.

Figura 6.16 – Fronteira de Pareto obtida para a PCA LTU BAPTA, Instância 1.

A Fronteira de Pareto apresentou boa diversidade com soluções nãodominadas espalhadas ao longo da Fronteira. Os resultados obtidos apresentaram melhoras significativas para todos os objetivos quando comparado com os resultados obtidos pelo método tradicional. A Tabela 6.22 apresenta o resultado da comparação entre os valores dos extremos da Fronteira de Pareto obtido pelo M-GEO e o método tradicional.

			-				
	Preferência	a na otimização d	da Taxa de	Preferência na otimização do			
		Falhas		compr	rimento das cone	exões	
	Número da Solução	Comprimento conexões (mm)	Taxa de Falhas (FIT)	Número da Solução	Comprimento conexões (mm)	Taxa de Falhas (FIT)	
M-GEO	134.126	1.913,0	120,9740	145.974	1.099,0	169,7883	
Método Tradicional	-	1.923,0	214,6884	-	1.923,0	214,6884	

Tabela 6.22 – Valores dos extremos da Fronteira de Pareto obtidos para a PCA LTU BAPTA com uso do algoritmo M-GEO, Instância 1.

A melhor solução obtida para a preferência na otimização da taxa de falhas

apresentou taxa de falhas total igual a 120,9740 FIT e comprimento total das conexões de 1.913mm. Embora a metodologia tenha proporcionado a redução de apenas 0,5% no comprimento total das conexões, a redução na taxa de falhas total foi de 43,7%.

A melhor solução para a otimização do comprimento total das conexões apresentou como resultado para a taxa de falhas total o valor de 169,7883 FIT e comprimento total das conexões de 1.099mm. Nesse caso, a metodologia proporcionou a redução de 42,8% no comprimento das conexões e 20,9% na taxa de falhas total.

As soluções indicadas nos extremos da Fronteira de Pareto obtidas pelo algoritmo, i.e, a melhor solução quando o objetivo era otimizar a taxa de falhas total (solução 134.126) e a melhor solução quando o objetivo era otimizar o comprimento das conexões (solução 145.974) foram analisados e os resultados comparados com os obtidos pelo método tradicional. A Figura 6.17 apresenta o posicionamento proposto na solução 134.126 para a preferência na otimização da taxa de falhas total e a Figura 6.18 apresenta o posicionamento obtido pelo método tradicional.

Figura 6.17 – Posicionamento para PCA LTU BAPTA, Figura 6.18 – Posicionamento para PCA LTU BAPTA, M-GEO, Instância 1 (sol. 134.126). método tradicional.

Para a solução 134.126 a metodologia proporcionou redução das Tj de todos os componentes favorecendo a diminuição de suas taxas de falhas individuais.

Observa-se que a posição dos componentes próximos ao "*frame*" da PCI e em diferentes quadrantes permitiu a redução de suas Tj. A Tabela 6.23 apresenta a temperatura e taxa de falhas de cada componente proposto na solução 134.126.

Componente	Tj(ºC)	Tcase(ºC)	T _{av} board(⁰C)	$λ_p$ (FIT)
U1	63,7	58,5	58,5	18,6595
U3	64,2	64,0	63,9	4,1867
U9	87,2	83,7	81,9	39,6347
U10	62,8	56,8	59,4	4,7847
U13	58,5	58,0	58,0	3,4842
U14	53,5	52,9	51,7	2,5198
U19	86,2	82,7	80,2	38,3237
U22	53,6	53,1	52,9	2,5424
U23	55,8	55,2	52,8	2,9237
U25	57,1	57,1	57,0	1,9274
U26	57,5	57,0	49,2	1,9499
R37	-	69,3	57,4	0,0034
R40	-	72,7	61,0	0,0034
R56	-	74,3	64,9	0,0044
RAP1	-	62,6	61,8	0,0041
R57	-	65,2	57,0	0,0127
R58	-	54,4	46,3	0,0092

Tabela 6.23 – Temperatura dos componentes para a LTU BAPTA, Instância 1 (sol. 134.126).

O posicionamento obtido na solução analisada permitiu a diminuição da temperatura média da PCI para 54,4°C. Essa diminuição representa, em relação ao método tradicional, uma redução de 13,4%. Nesse caso, considerando a temperatura média da PCI igual a 54,4°C, a taxa de falhas total para os 155 componentes da LTU BAPTA é de 183,1608 FIT, que corresponde a uma redução de 36,3% quando comparado com o posicionamento obtido pelo método tradicional. A Figura 6.19 apresenta o mapa de distribuição de temperaturas na PCI.

A melhor solução obtida para a otimização do comprimento total das conexões foi a solução 145.974 que apresentou como resultado para a taxa de falhas

total o valor de 169,7854 FIT e comprimento total das conexões de 1.099mm.

Figura 6.19 – Mapa de distribuição de temperatura na PCI LTU BAPTA, Instância 1 (sol. 134.126).

Ao contrário da solução anterior, com exceção dos componentes U9 e U19, todos os demais componentes apresentaram ligeira elevação em suas Tj. O motivo para isso é o posicionamento dos componentes próximos uns aos outros. Porém, a posição do U9 e U19 próximos ao "*frame*" permitiu que suas Tj ficassem abaixo das temperaturas obtidas pelo método tradicional.

A redução das Tj desses componentes possibilitou a redução de suas taxa de falhas de modo a compensar a ligeira elevação das taxa de falhas dos demais componentes devido a elevação de suas Tj. A taxa de falhas total foi reduzida em 20,9% para os componentes selecionados com a redução de 42,8% no comprimento total das conexões. A Figura 6.20 apresenta o posicionamento proposto na solução 145.974 para a preferência na otimização do comprimento total das conexões.

Com o posicionamento proposto a temperatura média da placa foi 55,4 °C. Nesse caso, a taxa de falhas total de todos os 155 componentes da PCA LTU BAPTA é de 232,8664 FIT, proporcionando redução de 19,0% na taxa de falhas total da PCA quando comparado ao método tradicional.

M-GEO, Instância 1 (sol. 145.974).

BAPTA, método tradicional.

A Tabela 6.24 apresenta a temperatura individual dos componentes obtida com o posicionamento proposto na solução 145.974 e suas taxa de falhas.

Componente	Tj(⁰C)	Tcase(ºC)	T _{av} board(⁰C)	λ_{p} (FIT)
U1	64,6	59,3	63,5	19,1682
U3	74,3	74,2	74,1	6,3271
U9	90,3	86,8	85,0	46,9958
U10	63,1	57,1	63,2	4,8712
U13	60,6	60,0	60,0	3,8930
U14	67,3	66,7	65,6	6,0439
U19	94,0	90,5	88,2	59,3017
U22	70,1	69,5	69,4	7,1954
U23	73,6	73,1	71,1	8,5284
U25	68,8	68,8	68,8	2,4250
U26	72,4	71,9	64,6	3,8687
R37	-	73,1	61,4	0,0035
R40	-	77,4	66,0	0,0036
R56	-	72,2	62,8	0,0034
RAP1	-	62,9	62,1	0,0041
R57	-	69,3	64,9	0,0131
R58	-	56,0	48,4	0,0093

Tabela 6.24 – Temperatura dos componentes para a PCA LTU BAPT.	Ά,
Instância 1 (sol. 145.974).	

6.2.4 Resultados com uso da metodologia multiobjetivo – Instância 2

Para a Instância 2, além da taxa de falhas total dos componentes e o comprimento total das conexões entre os componentes, a seleção adequada do nível de qualidade dos componentes também foi considerada. Para a implementação da metodologia foram considerados os níveis de qualidade e preços dos componentes descritos na Tabela 6.25.

Na implementação do algoritmo variável de projeto (X) que representa o componente foi codificada em 20 bits, dos quais, dois deles representam a rotação do componente, dois representam a seleção do nível de qualidade do componente e os 16 bits restantes representam a coordenada central de posicionamento do componente na PCI.

A seqüência de bits que codificam os 17 componentes é representada por 340 bits (17 componentes x 20 bits). O valor selecionado para o parâmetro " τ " foi igual a 5.0. O número de avaliações para a seqüência de bits F(X) foi limitado em 118 execuções, com 10 inicializações independentes. O número de soluções foi limitado a 400.000 soluções candidatas.

Das 400.000 soluções geradas, 234.754 soluções são viáveis, representando 58,7% do total. A sobreposição entre os componentes ou entre componentes e *"frame*" é a principal causa do elevado número de soluções não viáveis. Após a aplicação do conceito de dominância nas soluções geradas pela metodologia, obteve-se um conjunto de 471 soluções não-dominadas das quais 441 soluções dominaram a solução obtida pelo método tradicional.

A Figura 6.22 apresenta a Fronteira de Pareto obtida e o resultado para o posicionamento utilizando o método tradicional.

Componente	Preço dos componentes (em U\$) de acordo com o nível de qualidade						
Componente	Nível 1	Nível 2	Nível 3	Nível 4			
80C32	5962-0051801VQC	5962-0051801QQC					
TID	30Krad	30Krad	-	-			
Preço	1.807,29	1.534.64					
UT28F256QLT	5962F9689110VXC	5962R9689110VXC					
TID	300Krad	100Krad	-	-			
Preço	2.227,90	1.795,89					
HS9-565BRH-Q	5962R9675502VXC	HS9-565BRH-Q					
TID	100Krad	10Krad	-	-			
Preço	791,50	474,9					
LM139:	5962R9673801VDA	JM38510/11201SDA					
TID	100Krad	20Krad	-	-			
Preço	267,85	175,48					
LM108A	5962R9863702VGA	JM38510/10104SGA	LM108A				
TID	100Krad	50Krad	25Krad	-			
Preço	254,50	157,00	7,90				
AD584	5962R3812801VGA	5962L3812805VGA					
TID	100Krad	50Krad	-	-			
Preço	512,00	296,96					
LM117H	5962R9951703VXA	RM117HRQMLV	LM117HVH				
TID	100Krad	63Krad	20Krad	-			
Preço	369,58	215,24	11,90				
54HC373	920305902F		SNJ54HC373FK	SNJ54AC373J(2)			
TID	50Krad	-	20Krad	15Krad			
Preço	158,98		32,87	14,49			
Res 200K 1/8W 2%	RLR05C2003GS	RLR05C2003GR	RLR05C2003GP	RLR05C2003GM			
TID	N/A	N/A	N/A	N/A			
Preço	1,80	1,10	0,30	0,10			
Res 5R1 1/4W 2%	RLR07C5R10GS	RLR07C5R10GR	RLR07C5R10GP	RLR07C5R10GM			
TID	N/A	N/A	N/A	N/A			
Preço	2,10	1,20	0,30	0,20			
Res 3R1 1/8W 1%	RLR07C3R10FS	RLR07C3R10FR	RLR07C3R10FP	RLR07C3R10FM			
TID	N/A	N/A	N/A	N/A			
Preço	1,80	1,10	0,30	0,20			
Res 12R 1/2W 2%	RLR20C12R0GS	RLR20C12R0GR	RLR20C12R0GP	RLR20C12R0GM			
TID	N/A	N/A	N/A	N/A			
Preço	4,10	2,50	0,60	0,30			

Tabela 6.25 – Preço e níveis de qualidade dos componentes considerados na metodologia para a LTU BAPTA.

Figura 6.22 – Fronteira de Pareto obtida com uso do algoritmo M-GEO para a LTU BAPTA, Instância 2.

A Tabela 6.26 apresenta algumas das 441 soluções não-dominadas obtidas para a PCA LTU BAPTA com as taxas de falhas, comprimento e custo total para os 17 componentes além dos respectivos níveis de qualidade e os valores para a solução obtida pelo método tradicional.

Tabela 6.26 - Algumas das soluções viá	veis obtidas pelo algoritmo M-GEO
para a LTU BAPTA, Instâ	ncia 2.

nº da	Taxa de	Compri.	Preço	eço Nível de qualidade selecionada para os componentes																
Solução	falhas (FIT)	(mm)	(U\$)	U1	U3	U9	U10	U13	U14	U19	U22	U23	U25	U26	R37	R40	R56	RP_1	R57	R58
191.469	190,8696	1.876	7.044,67	1	2	1	1	1	1	1	1	2	2	1	4	3	4	4	4	2
264.878	194,6684	1.908	7.004,59	2	2	1	2	1	1	1	1	1	1	1	1	1	1	1	1	1
190.509	195,0277	1.745	7.044,67	1	2	1	1	1	1	1	1	2	2	1	4	3	4	4	4	2
190.517	201,3621	1.855	6.947,17	1	2	1	1	1	2	1	1	2	2	1	4	3	4	4	4	2
262.744	203,0412	1.882	7.087,74	2	2	1	1	1	1	1	1	1	1	1	3	3	3	2	3	1
196.629	210,9967	1.436	6.952,30	1	2	1	2	1	1	1	1	2	2	1	4	3	4	4	4	2
190.176	220,8912	1.701	6.792,83	1	2	1	1	1	2	1	1	2	2	2	4	3	4	4	4	2
237.436	320,1633	1.758	5.853,62	1	2	1	2	3	3	1	2	3	2	3	2	4	3	3	4	4
319.018	380,6667	1.769	5.677,27	2	2	1	2	3	3	1	1	3	2	3	4	4	4	4	4	4
232.017	401,9476	1.514	5.581,97	2	2	1	2	3	3	1	2	3	2	3	2	2	3	3	4	4
319.749	594,9762	1.562	5.263,17	2	2	1	2	3	3	2	2	3	2	3	4	4	4	4	4	4
314.989	806,1643	1.736	4.946,57	2	2	2	2	3	3	2	2	3	2	3	4	4	4	4	4	4
320.329	855,8695	1.562	4.797,47	2	2	2	2	3	3	2	3	3	2	3	4	4	4	4	4	4
Método Trad.	214,6884	1.923	7.801,62	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

A melhor solução obtida para a preferência na otimização da taxa de falhas foi a solução 191.469 que apresentou taxa de falhas total igual a 190,8696 FIT com comprimento total das conexões de 1.876mm ao custo total de U\$ 7.044,67 para os componentes. Embora a redução no comprimento total das conexões tenha sido de apenas 2,4%, houve redução de 11,1% na taxa total de falhas e de 9,7% no custo dos componentes. A Tabela 6.27 apresenta os custos e o nível de qualidade dos componentes selecionados na solução 191.469.

Identificação	Componente	Part Number	Nível de Radiação	Custo (U\$)
U1	80C32	5962-0051801VQC	30Krads	1.807,29
U3	UT28F256QLT	5962R9689110VXC	100Krads	1.795,89
U9	HS565BRH	5962R9675502VXC	100Krads	791,50
U10	LM139	5962R9673801VDA	100Krads	267,85
U13	LM108	5962R9863702VGA	100Krads	254,50
U14	LM108	5962R9863702VGA	100Krads	254,50
U19	HS565BRH	5962R9675502VXC	100Krads	791,50
U22	LM108	5962R9863702VGA	100Krads	254,50
U23	LM108	JM38510/10104SGA	50Krads	157,00
U25	AD584	5962L3812805VGA	50Krads	296,96
U26	LM117	5962R9951703VXA	100Krads	369,58
R37	Res 200K	RLR05C2003GM	N/A	0,10
R40	Res 200K	RLR05C2003GP	N/A	0,30
R56	Res 5R1	RLR07C5R10GM	N/A	0,20
RAP1	Res 3R1	RLR07C3R10FM	N/A	0,20
R57	Res 12R	RLR20C12R0GM	N/A	0,30
R58	Res 12R	RLR20C12R0GR	N/A	2,50

Tabela 6.27 – Custo dos componentes e nível de qualidade para os componentes da PCA LTU BAPTA, Instância 2, (sol. 191.469) – melhor taxa de falhas.

Na Tabela 6.28 é possível observar que a metodologia proporcionou a redução das Tj para a maioria dos componentes favorecendo a diminuição de suas taxa de falhas individuais.

Em relação ao método tradicional, a metodologia também proporcionou a redução de 17,0% na temperatura média da PCI, atingindo a temperatura de 52,1°C. Como essa temperatura é usada para calcular as taxas de falhas individuais dos demais componentes não relacionados no processo de posicionamento, essa redução também contribuiu para a redução da taxa de falhas total da PCA.

Componente	Tj(ºC)	Tcase(ºC)	T _{av} board(⁰C)	$λ_p$ (FIT)
U1	63,9	58,7	59,8	18,7297
U3	73,0	72,8	72,7	25,8870
U9	93,8	90,3	88,6	58,7549
U10	62,9	56,9	61,2	4,8224
U13	59,7	59,1	59,1	3,5001
U14	61,8	61,3	60,2	4,3633
U19	91,2	87,7	85,3	50,7588
U22	52,8	52,2	52,1	2,3022
U23	54,9	54,4	51,9	12,8320
U25	56,7	56,7	56,6	8,0623
U26	76,8	76,2	69,2	0,0047
R37	-	68,7	56,7	0,1116
R40	-	72,8	61,1	0,0346
R56	-	74,8	65,4	0,1150
RAP1	-	63,0	62,2	0,1367
R57	-	64,7	56,1	0,4227
R58	-	55,4	47,6	0,0310

Tabela 6.28 – Temperatura dos componentes e taxas de falhas para os componentes da LTU BAPTA, Instância 2, (sol. 191.469).

A Figura 6.23 apresenta o mapa de distribuição de temperaturas na PCI.

Figura 6.23 – Mapa de distribuição de temperatura na PCI LTU BAPTA, Instância 2, (sol. 191.469).

Se forem considerados as temperaturas e os níveis de qualidade selecionados obtidos na solução 191.469 (para os 17 componentes) e para os demais componentes forem considerados os níveis de qualidade usados no projeto

original (nível 1) e a temperatura média da PCI, a redução na taxa de falhas total da LTU BAPTA será de 33,6% com redução de 6,6% no custo total dos componentes (U\$ 10.756,00). A Tabela 6.29 apresenta as taxas de falhas considerando essa situação.

0				
Família de Componentes	Taxa Falhas (FIT)	% do total de falhas	Custo (US\$)	% redução no custo(*)
Circuitos Integrados	186,9164	85,78	9.142,54	7,5
Conector	18,3400	8,42	33,42	0,0
Cristal	10,5000	4,82	702,16	0,0
Transistor	1,1554	0,53	60,57	0,0
Diodos	0,4487	0,21	450,60	0,0
Resistores	0,4830	0,22	109,70	10,2
Capacitores	0,0536	0,02	257,01	0,0
TOTAL	217,8972	100,0	10.756,00	6,6
(*)				

Tabela 6.29 - Taxa de falhas total calculada para a PCA L	ΤU ΒΑΡΤΑ
considerando a Instância 2 (sol. 191.469).	

(*) comparado ao método tradicional

A Figura 6.24 e a Figura 6.25 apresentam o posicionamento proposto para a otimização do comprimento total das conexões para a solução 191.469 e para a solução obtida pelo método tradicional.

Figura 6.24 – Posicionamento para PCA LTU BAPTA, M-GEO, Instância 2 (sol. 191.469).

Para atender o requisito de confiabilidade da PCA LTU BAPTA (0,9900), a taxa de falhas total requerida deve ser de 382,4328 FIT. Se for considerado a solução 237.436, a taxa de falhas total para todos os 155 componentes da PCA LTU BAPTA será de 382,1959 FIT com comprimento total das conexões de 1.758mm ao custo de U\$ 9.564,95. Nesse caso, o requisito de confiabilidade para a PCA LTU BAPTA seria atendido com redução de 16,9% no custo total dos componentes quando comparado com o método tradicional.

6.2.5 Resultados com o uso da Metodologia Multiobjetivo – Instância 3

O objetivo da Instância 3 é avaliar a eficiência da metodologia para o posicionamento e a seleção adequada do nível de qualidade dos componentes onde a escolha dos componentes a serem considerados na metodologia não se limitou apenas aos aspectos térmicos. A preferência na escolha foi para os componentes com maior número de conexões e aqueles que apresentam maiores opções para a redução do custo final.

6.2.5.1 Aplicação do Método Tradicional

Para esta Instância os seis resistores considerados na Instância 2 foram substituídos por cinco circuitos integrados.

Os componentes adicionados são componentes com maiores dimensões e grande número de conexões o que traz mais dificuldade ao posicionamento devido a maior possibilidade de ocorrência de sobreposição entre componentes ou entre componentes e *"frame"*. A Figura 6.26 apresenta as posições dos componentes obtidas pelo método tradicional e escolhidas para a serem posicionados pela metodologia.

A Tabela 6.30 apresenta as características térmicas dos 16 componentes considerados na Instância 3.

Figura 6.26 – PCA LTU BAPTA com indicação das posições para os 16 componentes considerados na Instância 3

Tabela 6.30 - Características t	érmicas dos componentes da PCA LTU BAPTA,
Instância 3	

Identificação	Componente	Package	Qmax(W)	Rjc(ºC/W)
U1	80C32	CDIP40	0,066	30,0
U3	UT28F256QLT	FPC28	0,168	3,3
U9	HS565BRH	FPC24	0,316	15,0
U10	LM139	FPC14	0,012	95,0
U13	LM108	TO99	0,014	38,0
U14	LM108	TO99	0,014	38,0
U19	HS565BRH	FPC24	0,316	15,0
U22	LM108	TO99	0,014	38,0
U23	LM108	TO99	0,014	38,0
U25	AD584	TO99	0,012	8,0
U26	LM117	TO99	0,026	21,0
U2	54HC373	FPC20	0,001	22,0
U11	54HC373	FPC20	0,001	22,0
U12	54HC373	FPC20	0,001	22,0
U15	54HC373	FPC20	0,001	22,0
U16	54HC373	FPC20	0,001	22,0

A Tabela 6.31 apresenta os principais parâmetros obtidos da norma MIL-HDBK-217F e utilizados pela empresa para o cálculo das taxas de falhas.

Componente	C1	C2	$\pi_{ m Q}$	π_{E}	π_{L}
80C32	0,1400	0,0150	0,25	0,5	1,0
UT28F256QLT	0,0068	0,0130	0,25	0,5	1,0
HS565BRH	0,0200	0,0013	0,25	0,5	1,0
LM139	0,0100	0,0037	0,25	0,5	1,0
LM108	0,0100	0,0020	0,25	0,5	1,0
LM108	0,0100	0,0020	0,25	0,5	1,0
HS565BRH	0,0200	0,0087	0,25	0,5	1,0
LM108	0,0100	0,0020	0,25	0,5	1,0
LM108	0,0100	0,0020	0,25	0,5	1,0
AD584	0,0100	0,0079	0,25	0,5	1,0
LM117	0,0100	0,0020	0,25	0,5	1,0
54HC373	0,0100	0,0070	0,25	0,5	1,0
54HC373	0,0100	0,0070	0,25	0,5	1,0
54HC373	0,0100	0,0070	0,25	0,5	1,0
54HC373	0,0100	0,0070	0,25	0,5	1,0
54HC373	0,0100	0,0070	0,25	0,5	1,0

Tabela 6.31 – Principais parâmetros para o cálculo das taxas de falhas dos componentes usados na Instância 3.

A Tabela 6.32 apresenta os custos e os níveis de qualidade para os 16 componentes escolhidos para a Instância 3 e usados para a montagem da PCA, conforme definido no método tradicional.

Identificação	Componente	Part Number	Nível de Radiação*	Preço (U\$)*			
U1	80C32	5962-0051801VQC	30Krad	1.807,29			
U3	UT28F256QLT	5962R9689110VXC	300Krad	2.227,90			
U9	HS565BRH	5962R9675502VXC	100Krad	791,50			
U10	LM139	5962R9673801VDA	100Krad	267,85			
U13	LM108	5962R9863702VGA	100Krad	254,50			
U14	LM108	5962R9863702VGA	100Krad	254,50			
U19	HS565BRH	5962R9675502VXC	100Krad	791,50			
U22	LM108	5962R9863702VGA	100Krad	254,50			
U23	LM108	5962R9863702VGA	100Krad	254,50			
U25	AD584	5962R3812801VGA	100Krad	512,00			
U26	LM117	5962R9951703VXA	100Krad	369,58			
U2	54HC373	920305902F	50Krad	158,98			
U11	54HC373	920305902F	50Krad	158,98			
U12	54HC373	920305902F	50Krad	158,98			
U15	54HC373	920305902F	50Krad	158,98			
U16	54HC373	920305902F	50Krad	158,98			

Tabela 6.32 – Custos dos componentes e níveis de qualidade usados no método tradicional, Instância 3.

*Preços e níveis de qualidade dos componentes adquiridos para o Programa CBERS

O custo total para os 16 componentes é de U\$ 8.580,52 que representa 74,5%

do custo total de todos os componentes usados na montagem da PCA LTU BAPTA. A Tabela 6.33 apresenta as temperaturas e as taxas de falhas individuais dos componentes para o posicionamento proposto pelo método tradicional.

Componente	Tj(ºC)	Tcase(ºC)	T _{av} board(⁰C)	λ_p (FIT)
U1	64,1	58,9	60,9	18,8832
U3	74,4	74,2	74,1	6,3394
U9	102,0	98,6	96,9	90,5788
U10	62,6	56,6	57,2	4,7244
U13	69,7	69,2	69,2	7,0395
U14	62,8	62,2	61,1	4,5693
U19	99,9	96,7	94,5	83,1438
U22	66,9	66,4	66,2	5,9136
U23	63,2	62,7	60,4	4,6862
U25	75,6	75,6	75,7	2,7953
U26	63,6	63,0	55,4	2,5817
U2	52,9	52,6	62,4	1,2655
U11	50,1	49,8	55,8	1,5958
U12	57,1	56,8	72,7	1,8159
U15	49,9	49,6	55,2	1,3027
U16	54,9	54,6	67,3	1,4539

Tabela 6.33 – Temperatura e taxas de falhas individuais dos componentes para a LTU BAPTA obtidos no método tradicional, Instância 3.

A taxa de falhas total calculada para os 16 componentes selecionados foi igual a 238,6891 FIT e a taxa de falhas total calculada para a PCA LTU BAPTA foi de 295,5853 FIT, para a temperatura média da PCI igual a 57,0°C. O comprimento total das conexões obtido foi de 3.600mm.

6.2.5.2 Aplicação da metodologia com uso do M-GEO canônico

Foram geradas 377.600 soluções para a avaliação da Instância 3, onde 216.172 soluções são viáveis, representando 57,2% do total. Assim como na Instância 2, a sobreposição entre os componentes ou entre componentes e *"frame"* é a principal causa do elevado número de soluções não viáveis. Embora nessa Instância os resistores, de menores dimensões, tenham sido substituídos por circuitos integrados, de maiores dimensões, a porcentagem de soluções não viáveis causadas pela sobreposição entre componentes manteve-se próximo aos índices obtidos na Instância 2.

Com a aplicação do conceito de dominância nas soluções geradas pela metodologia, obteve-se um conjunto de 473 soluções não-dominadas das quais, 441 soluções dominam a solução obtida pelo método tradicional. A Figura 6.27 apresenta a Fronteira de Pareto obtida e o resultado para o posicionamento utilizando o método tradicional.

Figura 6.27 – Fronteira de Pareto obtida para a LTU BAPTA, Instância 3.

Com o aumento do número de componentes com grande quantidade de conexões houve aumento significativo no comprimento das conexões. O comprimento total das conexões para as soluções não-dominadas variaram de 2.263mm a 5.058mm. Da mesma forma, o aumento do número de possibilidade para a seleção de componentes favoreceu o aumento do número de combinações para o conjunto final dos componentes e com isso o aumento na taxa de falhas total. O valor para a taxa de falhas total para os 16 componentes variou de 190,0739 FIT a 1.290,2930 FIT com custo total dos componentes variando de U\$ 5.300,73 a U\$ 8.211,14

A Tabela 6.34 apresenta algumas das 441 soluções não-dominadas obtidas para a LTU BAPTA com as taxas de falhas, comprimento e custo total para os 16 componentes além dos respectivos níveis de qualidade e os valores para a solução obtida pelo método tradicional.

Nº da	Taxa de	Compri.	Preço		Nív	/el d	de q	ualio	dade	sel	ecio	nada	a pa	ra os	s co	mpo	nen	tes	
Solução	falhas (FIT)	(mm)	(U\$)	U1	U3	U9	U10	U13	U14	U19	U22	U23	U25	U26	U2	U11	U12	U15	U16
108.205	190,0739	3.831	8.085,03	1	1	1	1	1	1	1	1	1	2	2	1	3	1	1	1
108.284	199,6947	3.746	8.085,03	1	1	1	1	1	1	1	1	1	2	2	1	З	1	1	1
109.165	209,1488	3.148	8.085,03	1	1	1	1	1	1	1	1	1	2	2	1	3	1	1	1
109.379	214,2671	3.106	8.211,14	1	1	1	1	1	1	1	1	1	2	2	1	1	1	1	1
109.177	219,2666	3.095	8.085,03	1	1	1	1	1	1	1	1	1	2	2	1	3	1	1	1
111.729	220,8565	2.930	8.085,03	1	1	1	1	1	1	1	1	1	2	2	1	З	1	1	1
187.977	229,4352	2.780	7.895,27	1	1	1	1	3	1	1	1	2	2	1	3	1	1	1	1
187.099	299,2976	2.374	7.648,67	1	1	1	1	3	3	1	1	2	2	1	З	1	1	1	1
148.738	301,2412	3.288	7.187,38	1	1	1	2	1	1	1	1	2	2	З	З	З	З	3	3
55.519	365,0466	3.300	6.526,70	1	1	1	2	3	3	1	1	3	2	3	3	4	3	З	3
218.169	367,1622	2.437	6.865,96	1	1	1	2	3	3	1	2	З	1	2	З	З	З	3	3
Método Trad.	238,6891	3.600	8.580,52	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

Tabela 6.34 – Algumas das soluções não-dominadas obtidas pelo M-GEO para a LTU BAPTA, Instância 3.

A melhor solução obtida para a preferência na otimização da taxa de falhas foi a solução 108.205 que apresentou taxa de falhas total para os 16 componentes igual a 190,0739 FIT com comprimento total das conexões de 3.831mm ao custo total dos componentes de U\$ 8.085,03. Embora o comprimento total das conexões tenha aumentado em 6,0% em relação ao método tradicional, houve redução de 20,4% na taxa total de falhas e de 5,8% no custo dos componentes. A Tabela 6.35 apresenta os custos e o nível de qualidade dos componentes obtidos com a solução 109.379.

Tabela 6.35 – Custo dos compone	entes e nível de qualidade para a LTU
BAPTA, Instância 3	3 (sol. 109.379).

Identificação	Componente	Part Number	Nível de Radiação	Custo (U\$)
U1	80C32	5962-0051801VQC	30Krad	1.807,29
U3	UT28F256QLT	5962R9689110VXC	100Krad	2.227,90
U9	HS565BRH	5962R9675502VXC	100Krad	791,50
U10	LM139	5962R9673801VDA	100Krad	267,85
U13	LM108	5962R9863702VGA	100Krad	254,50
U14	LM108	5962R9863702VGA	100Krad	254,50
U19	HS565BRH	5962R9675502VXC	100Krad	791,50
U22	LM108	5962R9863702VGA	100Krad	254,50
U23	LM108	5962R9863702VGA	100Krad	254,50
U25	AD584	5962L3812805VGA	50Krad	296,96
U26	LM117	RM117HRQMLV	63Krad	215,24
U2	54HC373	920305902F	50Krad	158,98
U11	54HC373	920305902F	50Krad	158,98
U12	54HC373	920305902F	50Krad	158,98
U15	54HC373	920305902F	50Krad	158,98
U16	54HC373	920305902F	50Krad	158,98

Os valores obtidos na solução 109.379 apresentaram redução em todos os objetivos quando comparado ao método tradicional, apresentando redução de 10,2% na taxa de falhas total, 13,7% no comprimento total das conexões e 4,3% no custo total para os 16 componentes. Os níveis de qualidade selecionados para os componentes U25 e U26 contribuíram para a redução do custo total dos componentes. Para os demais componentes os níveis de qualidade selecionados pela metodologia foram os mesmos usados no método tradicional.

Com exceção do componente U15 a metodologia proporcionou a redução das Tj de todos os componentes, em especial para os componentes U13 e U25, onde a redução foi de 10,5°C e 14,1°C respectivamente. A diminuição da Tj contribuiu para a diminuição de suas taxa de falhas individuais. A Tabela 6.36 apresenta a temperatura dos componentes e suas taxas de falhas individuais obtidas na solução 109.379.

Componente	Tj(ºC)	Tcase(ºC)	T _{av} board(⁰C)	$λ_p$ (FIT)
U1	63,8	58,5	58,6	18,6776
U3	70,8	70,7	70,5	5,4515
U9	97,8	94,3	92,6	72,9235
U10	62,0	56,0	48,3	4,5535
U13	59,2	58,6	58,6	3,6245
U14	58,4	57,9	56,7	3,4621
U19	97,6	94,1	91,8	72,1000
U22	59,8	59,2	59,1	3,7727
U23	57,9	57,3	54,9	3,3385
U25	61,5	61,5	61,5	8,3676
U26	62,8	62,2	54,6	9,9378
U2	49,4	49,1	53,9	1,5750
U11	52,4	52,1	61,2	1,6615
U12	52,8	52,5	62,3	1,6755
U15	50,5	50,2	56,6	1,6062
U16	47,9	47,6	50,3	1,5365

Tabela 6.36 – Temperaturas e taxa de falhas obtidas para os componentes da PCA LTU BAPTA, Instância 3 (sol. 109.379).

Em relação ao método tradicional, a metodologia também proporcionou pequena redução na temperatura média da PCI, atingindo 55,9°C. A Figura 6.28 apresenta o mapa de distribuição de temperaturas na PCI.

Figura 6.28 – Mapa de distribuição de temperatura na PCI LTU BAPTA, Instância 3 (sol. 109.379).

Considerando as temperaturas e os níveis de qualidade para os 16 componentes selecionados na solução 109.379 e para os demais componentes os níveis de qualidade usados no projeto original (nível 1), a redução na taxa de falhas total da PCA LTU BAPTA será de 6,1% com redução de 3,2% no custo total dos componentes e 13,7% no comprimento total das conexões. A Tabela 6.37 apresenta as taxas de falhas considerando essa situação.

Família de Componentes	Taxa Falhas (FIT)	% do total da taxa de falhas	Custo (US\$)	% redução no custo (*)				
Circuitos Integrados	238,9220	88,47	9.517,71	3,7				
Capacitores	0,0617	0,02	257,01	-				
Conector	18,3400	6,79	33,42	-				
Cristal	10,5000	3,89	702,16	-				
Diodos	0,5008	0,19	450,60	-				
Resistores	0,4943	0,18	122,10	-				
Transistor	1,2456	0,46	60,57	-				
TOTAL	270,0644	100,0	11.143,57	3,2				

Tabela 6.37 – Taxa de falhas total calculada para a LTU BAPTA, Instância 3 (sol. 109.379).

(*) em relação ao método tradicional

A Figura 6.29 e a Figura 6.30 apresentam o posicionamento obtido na solução 109.379 e para a solução obtida pelo método tradicional.

Figura 6.29 – Posicionamento da PCA LTU BAPTA, M-GEO, Instância 3 (sol. 109.379).

Figura 6.30 – Posicionamento da PCA LTU BAPTA, método tradicional (Instância 3).

Para esta Instância, o requisito de confiabilidade para a PCA LTU BAPTA poderia ser atendido com a solução 148.738. Neste caso, a taxa de falhas total para todos os 155 componentes da PCA LTU BAPTA será de 357,0512 FIT com comprimento total das conexões de 3.288mm ao custo de U\$ 10.119,81. Assim, o requisito de confiabilidade para a PCA LTU BAPTA seria atendido com redução de 12,1% no custo total dos componentes se comparado com o método tradicional.

A Tabela 6.38 apresenta os custos e o nível de qualidade individual para os componentes selecionados na solução 148.738.

Identificação	Componente	Part Number	Nível de Radiação*	Custo (U\$)
U1	80C32	5962-0051801VQC	30Krad	1.807,29
U3	UT28F256QLT	5962F9689110VXC	300Krad	2.227,90
U9	HS565BRH	5962R9675502VXC	100Krad	791,50
U10	LM139	JM38510/11201SDA	20Krad	175,48
U13	LM108	5962R9863702VGA	100Krad	254,50
U14	LM108	5962R9863702VGA	100Krad	254,50
U19	HS565BRH	5962R9675502VXC	100Krad	791,50
U22	LM108	5962R9863702VGA	100Krad	254,50
U23	LM108	JM38510/10104SGA	50Krad	157,00
U25	AD584	5962L3812805VGA	50Krad	296,96
U26	LM117	LM117HVH	10Krad	11,90
U2	54HC373	SNJ54HC373FK	10Krad	32,87
U11	54HC373	SNJ54HC373FK	10Krad	32,87
U12	54HC373	SNJ54HC373FK	10Krad	32,87
U15	54HC373	SNJ54HC373FK	10Krad	32,87
U16	54HC373	SNJ54HC373FK	10Krad	32,87

Tabela 6.38 – Custo dos componentes e nível de qualidade para a PCA LTU BAPTA, Instância 3 (sol. 148.738).

A Figura 6.31 e a Figura 6.32 apresentam o posicionamento obtido na solução 148.738 e para a solução obtida pelo método tradicional.

Figura 6.31 – Posicionamento para PCA LTU BAPTA, Figura 6.32 – Posicionamento para PCA LTU BAPTA, M-GEO, Instância 3 (sol. 148.738). método tradicional (Instância 3).

A Tabela 6.39 apresenta as taxa de falhas dos componentes obtidas na solução 148.738.

Família de Componentes	Taxa Falhas (FIT)	% do total da taxa de falhas	Custo (US\$)	% redução no custo (*)
Circuitos Integrados	326,2815	91,28	7.187,38	27,3
Conector	18,3400	5,14	33,42	-
Cristal	10,5000	2,94	702,16	-
Transistor	1,2553	0,35	60,57	-
Diodos	0,5066	0,14	450,60	-
Resistores	0,4960	0,14	122,10	-
Capacitores	0,0626	0,02	257,01	-
TOTAL	357,4420	100,0	8.813,24	23,4

Tabela 6.39 – Taxa de falhas total calculada para a PCA LTU BAPTA, Instância 3 (sol. 148.738).

(*) em relação ao método tradicional

Em relação ao método tradicional, a metodologia também proporcionou pequena redução na temperatura média da PCI, atingindo 56,3ºC. A Figura 6.28 apresenta o mapa de distribuição de temperaturas na PCI.

Figura 6.33 – Mapa de distribuição de temperatura na PCI LTU BAPTA, Instância 3 (sol. 148.738).

6.3 Estudo de Caso 3 - Unidade eletrônica LTU BAPTA com uso de componentes Dummies – Instância 2.

Os estudos de casos anteriores representam uma grande parcela dos casos

reais encontrados em equipamentos para uso espacial. Entretanto, existem os casos onde a quantidade de componentes dissipativos na PCI é maior que os casos avaliados até o momento. Embora os resultados anteriores tenham mostrado a eficiência da metodologia, neste estudo de caso foi considerado o aumento da quantidade de elementos dissipativos na PCA de modo a dificultar a tarefa de posicionamento dos componentes. Com o aumento de elementos dissipativos, o algoritmo deve posicionar os componentes de modo a garantir que as suas temperaturas de junção não ultrapassem as temperaturas máximas especificadas além de evitar o surgimento de "*hot spots*".

Para este estudo de caso foram substituídos alguns componentes da PCA LTU BAPTA por componentes representativos (*"dummy"*) com maior dissipação térmica, conforme apresentado na Figura 6.34.

Figura 6.34 – PCA LTU BAPTA com indicação das posições para os 16 componentes, incluindo os cinco componentes "Dummies" considerados na Instância 2

Neste caso, as características térmicas dos componentes foram modificadas enquanto as dimensões, número de conexões e custo dos componentes foram mantidos. Com essa nova configuração, a dissipação de potência da PCA
passou de 2,75W para 4,0W. Os valores usados no modelo térmico desses "dummies" são valores de componentes reais, porém sem as mesmas funções elétricas. Essas considerações não comprometem os resultados, visto que os valores considerados são valores reais de componentes eletrônicos usados largamente em equipamentos de uso espacial.

6.3.1 Estudo de Caso 3 - Aplicação do Método Tradicional

A eficiência da metodologia foi avaliada através da comparação dos resultados obtidos pelo método tradicional e os resultados obtidos com a aplicação da metodologia. Os componentes U2, U11, U12, U15 e U16 foram substituídos por elementos *"dummies"*. O posicionamento dos componentes são os mesmos apresentados na Figura 6.26 são apresentas as características térmicas dos 16 componentes considerados.

Identificação	Componente	Package	Qmax(W)	Rjc(ºC/W)
U1	80C32	CDIP40	0,066	30,0
U3	UT28F256QLT	FPC28	0,168	3,3
U9	HS565BRH	FPC24	0,316	15,0
U10	LM139	FPC14	0,012	95,0
U13	LM108	TO99	0,014	38,0
U14	LM108	TO99	0,014	38,0
U19	HS565BRH	FPC24	0,316	15,0
U22	LM108	TO99	0,014	38,0
U23	LM108	TO99	0,014	38,0
U25	AD584	TO99	0,012	8,0
U26	LM117	TO99	0,026	21,0
U2	"Dummy'	FPC20	0,250	18,0
U11	"Dummy'	FPC20	0,250	18,0
U12	"Dummy'	FPC20	0,250	18,0
U15	"Dummy'	FPC20	0,250	18,0
U16	"Dummy'	FPC20	0,250	18,0

Tabela 6.40 – Características térmicas dos componentes da PCA LTU BAPTA, com uso de componentes "*dummies*".

A Tabela 6.41 apresenta as temperaturas e as taxas de falhas individuais dos componentes para o posicionamento proposto pelo método tradicional.

Componente	Tj(ºC)	Tcase(ºC)	T _{av} board(⁰C)	$λ_p$ (FIT)
U1	63,7	58,4	58,1	19,1012
U3	74,3	74,1	74,0	6,6038
U9	115,6	112,1	110,7	187,2633
U10	62,8	56,8	59,7	4,7923
U13	55,4	54,9	54,9	2,9032
U14	59,3	58,8	57,6	3,6765
U19	103,7	100,2	98,0	99,4667
U22	73,7	73,1	73,0	8,9596
U23	52,1	51,6	49,1	2,3231
U25	84,3	84,3	84,4	3,3923
U26	64,9	64,3	56,8	2,7381
U2	100,0	96,2	96,1	4,7457
U11	88,1	84,4	84,3	3,6181
U12	109,8	106,0	105,9	5,9878
U15	106,0	102,2	102,1	5,6326
U16	117,9	114,1	114,0	7,3228

Tabela 6.41 – Temperatura e taxas de falhas individuais dos componentes para a LTU BAPTA com uso de componentes "*dummies*" obtidos no método tradicional.

Analisando as temperaturas de junção dos componentes observa-se que várias delas ultrapassaram a temperatura máxima permitida (100°C). Neste caso a configuração para o posicionamento dos componentes não seria permitido e certamente a empresa responsável pelo projeto seria obrigada a propor um novo posicionamento. Este caso representa aqueles em que o resultado da análise térmica pode mostrar a necessidade de mudanças de posicionamento dos componentes por questões térmicas, conforme apresentado no Capítulo 2 e mostrado na Figura 2.1.

Com este posicionamento a temperatura média da PCI foi igual a 64,5°C mas com surgimento de vários "*hot spots*". Se forem considerados as Tj dos 16 componentes a taxa de falhas total será de 368,52710 FIT. Considerando a temperatura média da PCI para os demais componentes, a taxa de falhas total calculada para os 155 componentes da PCA LTU BAPTA seria de 430,95708 FIT, o que corresponde a uma confiabilidade de 0,98874 para uma missão de 3 anos. Este valor não atenderia o requisito de confiabilidade especificado (0,9900). O comprimento total das conexões manteve-se inalterado, como era esperado, pois não houve mudança no posicionamento dos componentes

proposto pelo método tradicional. Embora este posicionamento não seja permitido, ele se enquadra perfeitamente nos propósitos deste estudo de caso, ou seja, verificar a eficiência da metodologia na seleção e posicionamento de componentes dissipativos.

6.3.2 Resultados com uso da metodologia multiobjetivo – Instância 2

A implementacao do algoritmo M-GEO foi a mesma adotada no item 6.2.4, onde cada variável de projeto (X) que representa o componente foi codificada em 20 bits, dos quais, dois deles representam a rotação do componente, dois representam a seleção do nível de qualidade do componente e os 16 bits restantes representam a coordenada central de posicionamento do componente na PCI.

No total foram geradas 350.000 soluções das quais 199.168 são soluções viáveis, representando 34,0%. Das soluções inviáveis, 110.906 causaram sobreposição ("*overlap*"), representando 31,7% das soluções e 39.926 soluções excederam o limite máximo de temperatura de junção de pelo menos um dos 16 componentes, representando 11,4%. Nesse caso, como era de se esperar, o número de soluções que violaram a temperatura de junção dos componentes foi superior aos estudos de casos anteriores. Após a aplicação do conceito de dominância nas soluções geradas pela metodologia, obteve-se um conjunto de 375 soluções não-dominadas. A Figura 6.35 apresenta a Fronteira de Pareto obtida para a PCI LTU BAPTA com uso de componentes "Dummies" e na Tabela 6.42 algumas das soluções não-dominadas obtidas para a PCA BAPTA com uso de componentes "*Dummies*".

Figura 6.35 – Fronteira de Pareto obtida para a LTU BAPTA com uso de componentes "Dummies", Instância 2

Tabela 6.42 – Algumas das soluções não-dominadas obtidas	para	a PC	CA
BAPTA com uso de componentes "Dummies".			

Nº da	Taxa de	Compri.	Preço				Ní	vel de	quali	dade s	selecio	onada	para	os co	mpor	nentes	5		
Solução	falhas (FIT)	(mm)	(U\$̈́)	U1	U3	U9	U10	U13	U14	U19	U22	U23	U25	U26	U2	U11	U12	U15	U16
188.004	190,2660	3.334	8.580,52	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
187.797	191,2037	3.542	8.483,02	1	1	1	1	1	1	1	1	2	1	1	1	1	1	1	1
187.253	200,1289	3.350	8.267,98	1	1	1	1	1	1	1	1	2	2	1	1	1	1	1	1
181.849	272,5395	3.445	7.380,79	1	2	1	1	2	1	1	1	2	2	3	1	1	1	1	1
150.866	305,2566	3.830	7.013,21	1	2	1	2	1	3	1	1	2	2	3	1	1	1	1	3
324.739	306,7022	2.708	7.519,99	1	2	1	2	2	1	1	1	2	2	1	1	1	3	1	1
182.409	321,6258	3.445	7.205,64	2	2	1	1	1	1	1	1	2	2	3	1	1	1	1	1
176.649	346,1377	3.629	6.959,04	2	2	1	1	3	1	1	1	2	2	З	1	1	1	1	1
174.559	362,5667	3.786	6.738,49	1	2	1	1	3	3	1	3	2	2	3	1	1	1	1	1
Método Trad.	368,5271	3.600	8.580,52	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

A melhor solução obtida para a preferência na otimização da taxa de falhas foi a solução 188.004 que apresentou taxa de falhas total para os 16 componentes igual a 190,2660 FIT com comprimento total das conexões de 3.334mm ao custo total dos componentes de U\$ 8.580,52. Embora o custo total não tenha sido reduzido, já que os níveis de qualidade dos componentes escolhidos pelo algoritmo foram os mesmos usados no método tradicional, houve redução de 48,4% na taxa total de falhas e de 7,4% no comprimento das conexões. A Tabela 6.43 apresenta as temperaturas de junção dos 16 componentes e suas taxas de falhas individuais proposta na solução 188.004.

Componente	Tj(ºC)	Tcase(ºC)	T _{av} board(⁰C)	λ _p (FIT)
U1	65,1	59,8	66,5	19,4764
U3	71,2	71,0	70,9	5,6055
U9	94,6	91,1	89,4	61,3846
U10	62,1	56,1	50,2	4,5982
U13	55,3	54,8	54,8	2,8218
U14	74,0	73,5	72,5	9,3573
U19	93,2	89,8	87,4	56,7549
U22	54,7	54,1	53,9	2,7210
U23	47,8	47,2	44,6	1,7788
U25	68,6	68,6	68,6	2,3563
U26	71,9	71,3	64,1	3,7826
U2	91,7	88,0	87,8	3,9198
U11	86,2	82,4	82,3	3,3765
U12	93,3	89,6	89,5	4,0485
U15	99,5	95,7	95,6	4,6959
U16	87,5	83,8	83,6	3,5609

Tabela 6.43 – Temperaturas e taxa de falhas obtidas para os componentes da PCA LTU BAPTA "*dummies*", sol. 188.004.

Com exceção do U1 e U26, todos os demais componentes tiveram suas Tj reduzidas, favorecendo a redução de suas taxas de falhas individuais. A temperatura média da PCI também foi reduzida para 60,3°C, o que permitiu a redução da taxa de falhas total da PCA para 246,8427 FIT ou 42,7% em relação ao método tradicional. Dessa forma, a confiabilidade da PCA seria de 0,99353 para uma missão de três anos, atendendo plenamente o requisito de missão para a PCA.

A Figura 6.36 e Figura 6.37 apresentam o posicionamento obtido na solução 188.004 e a solução obtida pelo método tradicional.

Figura 6.37 – Posicionamento da PCA LTU BAPTA com Dummies, método tradicional.

O posicionamento proposto na solução 188.004 distribuiu os componentes mais dissipativos nos vários quadrantes da PCI evitando que as Tj dos componentes ultrapassassem a temperatura máxima permitida além de impedir o surgimento de "*hot spots*". A Figura 6.38 apresenta o mapa de distribuição de temperatura para a PCA LTU BAPTA obtida com a solução 188.004.

Figura 6.38 – Mapa de distribuição de temperatura na PCI LTU BAPTA com uso de "*dummies*", (sol. 188.004).

Se for considerado o requisito de confiabilidade para a LTU BAPTA, este poderia ser atendido, dentre outras, com a solução 324.739. Nesse caso, a taxa de falhas total para os 155 componentes seria de 357,0512 FIT com comprimento total das conexões de 2.708mm ao custo de U\$ 10.452,42. Esta solução traria redução de 9,2% no custo total dos componentes e de 24,8% no comprimento total das conexões quando comparado com o método tradicional.

A Tabela 6.44 apresenta as temperaturas de junção para os componentes e suas taxas de falhas proposto na solução os custos e o nível de qualidade individual para os componentes selecionados na solução 324.739.

Componente	Tj(ºC)	Tcase(ºC)	T _{av} board(⁰C)	$λ_p$ (FIT)
U1	65,5	60,2	69,0	19,9781
U3	79,7	79,6	79,5	31,8230
U9	99,4	96,0	94,3	79,7692
U10	62,4	56,4	53,7	18,6594
U13	62,9	62,4	62,4	18,4225
U14	66,1	65,6	64,5	7,2916
U19	93,4	90,0	87,6	56,0970
U22	63,5	62,9	62,8	4,9099
U23	52,6	52,1	49,6	9,6468
U25	62,7	62,7	62,7	8,6295
U26	78,1	77,6	70,6	5,1444
U2	98,8	95,1	94,9	4,5614
U11	93,1	89,4	89,3	4,0691
U12	90,2	86,4	86,3	30,3864
U15	99,9	96,1	96,0	4,9082
U16	85,8	82,1	81,9	3,5301

Tabela 6.44 – Temperaturas e taxa de falhas obtidas para os componentes da LTU BAPTA "*dummies*", sol. 324.739.

A Figura 6.39 e Figura 6.40 apresentam o posicionamento obtido na solução 324.739 e a solução obtida pelo método tradicional.

Figura 6.40 – Posicionamento para PCA LTU BAPTA com Dummies, método tradicional.

A Figura 6.41 apresenta o mapa dedistribuição de temperatura para a PCA LTU BAPTA obtida com a solução 324.739.

Figura 6.41 – Mapa de distribuição de temperatura na PCI LTU BAPTA com uso de "*dummies*", (sol. 324.739).

6.4 Considerações Gerais Sobre os Resultados Obtidos

Com os estudos de caso avaliados foi possível comprovar a eficiência da metodologia. Em todos os casos foi possível obter soluções que dominavam aquela obtida com o método tradicional. A escolha de qual o conjunto de componentes participará do posicionamento pode influenciar o resultado, dado a natureza multiobjetivo do problema. Se forem considerados todos os componentes que compõe a PCA, o tempo de execução do algoritmo irá aumentar consideravelmente, principalmente por causa do grande número de sobreposições que podem ocorrer entre os componentes, além de ser necessário o aumento do número de execuções para obter-se um número significativo de soluções viáveis. Neste caso, do ponto de vista térmico, a escolha de componentes mais dissipativos pode contribuir para a redução das temperaturas de junção dos componentes e da temperatura média da PCI e com isso, reduzir a taxa de falhas total da PCA, além de evitar o surgimento de "hot spots". Por outro lado, a escolha de componentes que possuam maior variedade para os níveis de qualidade pode permitir a redução do custo total da PCA. E por último, a escolha de um conjunto de componentes com grande quantidade de conexões pode permitir a redução do comprimento total das conexões.

Assim, recomenda-seo que o conjunto de componentes seja formado pelos principais componentes da PCA cujo objetivo é a otimização, ou seja, um conjunto que contenha os componentes mais dissipativos, os que apresentam grande quantidade de conexões e os componentes que possuam o maior número de diferentes níveis de qualidade. Outro ponto a ser observado é a possibilidade de usar a escolha dos componentes como forma de tendência (viés) a um determinado objetivo. Para os estudos de caso analisados, do ponto de vista térmico, a escolha dos componentes com dissipação igual ou maior que 10mW mostrou ser bem apropriado.

7 CONCLUSÃO E SUGESTÕES

Neste trabalho foi apresentado uma nova metodologia para a seleção e posicionamento ótimo de componentes eletrônicos em PCIs para uso espacial. A metodologia busca a otimização simultânea das conexões elétricas entre os componentes, de sua confiabilidade e de seu custo. O processo de posicionamento é aplicado a um subconjunto de componentes.

Diferentemente do processo tradicional, a metodologia proposta neste trabalho provê um conjunto de soluções de compromisso que permite ao projetista de PCA uma melhor avaliação do espaço de projeto e conseqüentemente uma melhor escolha para implementação considerando os vários aspectos da missão.

Para a implementação da metodologia foi utilizado um algoritmo multiobjetivo como a ferramenta de otimização acoplada a rotinas numéricas desenvolvidas para calcular a temperatura dos componentes e da PCI, o comprimento das conexões entre os componentes e a área total de sobreposição entre componentes e frame. Com exceção das rotinas para cálculo das temperaturas dos componentes e da PCI, todas as demais rotinas, incluindo o algoritmo multiobjetivo foram implementados pelo autor.

Do ponto de vista de eficiência, nos três casos reais usados para a avaliação, a metodologia mostrou que é capaz de fornecer soluções melhores que o obtido com o procedimento tradicional usado nos projetos de PCA. O uso da metodologia permite reduzir o tempo gasto para encontrar automaticamente não apenas uma solução satisfatória, mas um conjunto de soluções otimizadas, para um processo que tradicionalmente é feito de forma "manual" e com forte interação do projetista de "*layout*" e do especialista térmico.

Pelos resultados obtidos, fica evidente o potencial da metodologia em prover soluções eficientes levando-se em consideração o conjunto de componentes disponíveis para a seleção do nível de qualidade. Com a escolha adequada do nível de qualidade dos componentes foi possível obter redução significativa no custo final da PCA com o atendimento da confiabilidade requerida. Vale lembrar que a confiabilidade é obtida através da seleção adequada do nível de qualidade para um subconjunto de componentes eletrônicos e de seu posicionamento ótimo na PCI.

A redução da taxa de falhas total da PCA também foi observada. Neste caso, a redução das temperaturas de operação dos componentes foi fundamental. Verificou-se também que os componentes como resistores e capacitores contribuem de forma diminuta, tanto na taxa de falhas total da PCA quanto no custo total, sugerindo que esses componentes recebam menor atenção na escolha para compor o subconjunto dos componentes a serem selecionados, exceto nos casos em que estes componentes possam gerar "*hot spots*" na PCA.

Para a implementação da metodologia, o algoritmo de otimização multiobjetivo escolhido foi o M-GEO canônico (GALSKI, 2006). Embora a metodologia permita o uso de outro otimizador, optou-se pelo M-GEO pela sua simplicidade de implementação, baixo custo computacional e boa competividade quando comparado a outros algoritmos, além de ter sido desenvolvido no INPE e poder utilizá-lo em uma área de aplicação ainda não explorada por este algoritmo.

Embora o M-GEO tenha se mostrado bastante competitivo quando comparado a outros métodos estocásticos, ainda no âmbito deste trabalho, foram realizadas tentativas de aprimoramento do algoritmo com a implementação da técnica de distância de aglomeração (*"Crownding Distance"*) proposto por Deb (2000). Os resultados obtidos com a implementação não foram satisfatórios para o conjunto de funções testes usados neste trabalho. A explicação para isto pode estar na própria natureza do algoritmo M-GEO canônico onde todas as funções objetivo competem pelo privilégio de serem usadas como sendo a função de atribuição de adaptação e apenas uma é escolhida aleatóriamente para guiar a busca em direção à Fronteira de Pareto. Na implementação da proposta de aprimoramento o uso das funções objetivo para a atribuição de adaptação foi eliminado. Apenas o critério de dominância e a técnica de *"Crowding Distance"* foram utilizadas. Isto pode ter diminuido a capacidade do algoritmo em localizar pontos na região da Fronteira de Pareto presumida.

Além disto, o uso do critério adotado para mudar o valor do bit (a solução de maior distância de aglomeração), produziu inúmeras soluções repetidas. Como já era sabido, esse critério previlegia os bits que geram soluções localizadas nos extremos da Fronteira de Pareto. Porém, a probabilidade de uma mesma solução localizada no extremo da Fronteira se manter ao longo da busca não é desprezível e nesses casos, a mutação do bit gera a solução anterior.

Embora não tenha sido testado, o uso da técnica de "*Crowding Distance*" talvez possa ser eficiente se for usada como critério de escolha para as soluções que irão compor o conjunto externo de soluções não-dominadas nos casos em que o tamanho do arquivo externo é limitado. Com isto, poderia haver redução no custo computacional do algoritmo.

A principal dificuldade encontrada para a aplicação da metodologia proposta foi na identificação dos componentes que possuem uma gama de opções de diferentes níveis de qualidade, mas que atendam aos requisitos de missão, em especial aos requisitos de radiação. A tarefa de identificação destes componentes requer participação efetiva de especialistas da área de aquisição de componentes e de confiabilidade, porém nada diferente do exigido quando utilizado o método tradicional para o desenvolvimento de PCA. Outra dificuldade, embora sem prejuízo na avaliação do desempenho do algoritmo, foi não ter incorporado ao Aplicativo a opção de calcular a taxa de falhas total da PCA de forma automática, i.e, sem a necessidade de calcular a *posteriori*, com auxilio de uma planilha de dados.

Embora a metodologia desenvolvida seja de aplicação geral na área espacial,

nos exemplos apresentados neste trabalho, o conjunto de componentes considerado foi limitado pelo requisito de radiação aplicado ao Programa CBERS. Todavia, em um contexto mais amplo, componentes com menores níveis de resistência à radiação podem ser usados. Para isto, é necessário envolver áreas do conhecimento de componentes eletrônicos e técnicas de mitigação para os efeitos do ambiente espacial. Com isso, acredita-se que essa metodologia possa também contribuir para os estudos sobre o uso de componentes COTS ("*Commercial Off-The-Shelf*") em aplicações espaciais.

Um aspecto não explorado neste trabalho foi considerar o prazo de entrega dos componentes como uma das funções objetivo e não apenas os componentes disponíveis no momento do projeto da PCA. O prazo de entrega para os componentes pode ser importante para os casos em que o "decisor" tenha preferência a uma solução de projeto com maior confiabilidade (menor taxa de falhas) em detrimento ao custo e prazo de desenvolvimento.

Por todos os aspectos expostos, pode-se afirmar que a metodologia proposta é um excelente candidato a ser incorporada à "caixa de ferramentas" para o desenvolvimento de projetos de PCA.

Para futuros trabalhos, como descrito anteriormente, sugere-se, principalmente:

- A avaliação do impacto do uso do prazo de entrega ("lead time") como função objetivo;
- Investigar critérios para escolha da solução de projeto que será implementada, considerando os riscos associados;
- Investigar diferentes maneiras do uso da técnica de "Crowding Distance" ou "Fitness Sharing" na escolha de quais soluções serão mutadas no M-GEO.
- Avaliar a eficiência da metodologia considerando a fragmentação dos componentes em pequenos subconjuntos para o processo de posicionamento.

• Avaliar eficiência da metodologia com o uso de computação paralela como forma de reduzir o custo computacional.

REFERÊNCIAS BIBLIOGRÁFICAS

ABIDO M.A. A niched Pareto genetic algorithm for multiobjective environmental/ economic dispatch. **International Journal of Electrical Power and Energy Systems**, v. 25, n. 2, p. 97-105, Feb. 2003.

ABREU B. T., MARTINS E., SOUSA F. L. Generalized extremal optimization: a competitive algorithm for test data generation. In: SIMPÓSIO BRASILEIRO DE ENGENHARIA DE SOFTWARE, 21., 2007, João Pessoa. **Anais...** João Pessoa, Brasil: SBES, 2007.

METAHEURISTICS Network. Disponível em: metaheuristics.net/index.php?main=1. Acesso em: 17 Dez. 2011.

ADVANCED LOGISTICS DEVELOPMENT. Disponível em: ww.aldservice.com. Acesso em: 12 Set. 2010.

AKHMEDJANOV, F. M.. **Reliability databases**: state-of-the-art and perspectives. Roskilde: Risø National Laboratory, Aug. 2001, 37 p., ISBN(8755028101).

ATHANASOPOULOU E.; THAKKER P.; SANDERS W. H. Evaluating the dependability of a LEO satellite network for scientific applications. In: INTERNATIONAL CONFERENCE ON THE QUANTITATIVE EVALUATION OF SYSTEMS (QEST'05), 2., 2005, Torino, Italy. **Proceedings...** Torino, 2005, p. 95-104.

BECCENERI, J. C; SANDRI, S. Function optimization using ant colony systems with pheromone dispersion, In: INTERNATIONAL CONFERENCE ON INFORMATION, 11., 2006, Les Ménuires, France. **Proceedings...** Les Ménuires, France: Processing and Management of Uncertainty in Knowledge-based Systems (IPMU), 2006.

CASSOL, F. **Aplicação da análise inversa via otimização extrema generalizada em projetos de iluminação**. 2009. 100 p. Dissertação (Mestrado em Engenharia). Universidade Federal do Rio Grande do Sul, Porto Alegre, 2009.

CENTENO, F. R. Análise inversa da transferência de calor em soldagem por fricção linear utilizando o método de otimização extrema generalizada. 2008. 120 p. Dissertação (Mestrado em Engenharia). Universidade Federal do Rio Grande do Sul, Porto Alegre, 2008.

CHANG, Y. K.; YONG, K. M.; PARK J. H.; CHOI Y. J. A Study on thermal modeling and heat load mitigation for satellite electronic components . In: ANNUAL AIAA/USU CONFERENCE ON SMALL SATELLITES, 15., 2001, Logan, Utah. **Proceedings...** Logan: AIAA/USU, 2001.

COELLO C. A. C. A Comprehensive survey of evolutionary-based multiobjective optimization techniques. **Knowledge and Information Systems. An International Journal**, v. 1, n. 3, p. 269–308, August 1999.

COELLO C. A. C. A. Evolutionary multi-objective optimization: a historical view of the field. **IEEE Computational Intelligence Magazine**, v. 1, n. 1, p. 28-36, Feb. 2006.

COELLO, C. A. C.; LAMONT G. B.; VAN VELDHUIZEN, D. A. Evolutionary algorithms for solving multi-objective problems. 2. ed. New York: Springer, 2007. 610 p. ISBN(9780387367972).

CONDRA, L.; BOSCO, C.; DEPPE, R.; GULLO, L.; TREACY, J.; WILKINSON, C. Reliability assessment of aerospace electronic equipment. **Quality and Reliability Engineering International**, v. 15, n. 4, p. 253–260, July/Aug.1999.

COOPER, M. S. Investigation of arrhenius acceleration factor for integrated circuit early life failure region with several failure mechanisms. **IEEE Transactions on Components and Packaging Technologies**, v. 28, n. 3, p. 561-563, Sept. 2005.

CUCO, A. P. C.; SOUSA F. L.; VLASSOV, V. V.; SILVA NETO, A. Multiobjective design optimization of a new space radiator. **Mathematics and Statistics**, v. 12, n. 3, p. 393-406, Sept. 2011.

DEB, K.; AGRAWAL, S.; PRATAP, A.; MEYARIVAN, T. A Fast Elitist Nondominated Sorting Genetic Algorithm for multi-objective optimization: NSGA-II. In: INTERNATIONAL CONFERENCE ON PARALLEL PROBLEM SOLVING FROM NATURE, 6., 2000, Paris, France. **Proceedings...** Paris, France: Springer, 2000. p. 849–858.

DEB, K.; PRATEEK, J.; NAVEEN, K. G.; HEMANT, K. M. Multiobjective placement of electronic components using evolutionary algorithms . **IEEE Transactions On Components And Packaging Technologies**, v. 27, n. 3, p. 480–492, Sept. 2004.

DUTRA, W. D.; ABREU, P. E.; SILVAN, A. F.; CHAVES, P. C.; RESENDE, L. C.; MANSO, L. A. F. Otimização extrema generalizada aplicada ao problema de despacho ótimo de potência. In: SIMPÓSIO DE MECÂNICA COMPUTACIONAL, 9., 2010, São João Del-Rei – MG. **Anais...** São João Del-Rei – MG: UFSJ, 2010.

FEDERAL AVIATION ADMINISTRATION (FAA). **Semi-annual launch report.** - "ITAR-Free" satellites and their impact on the U.S. Launch Industry. 2010. Disponível em:

http://www.faa.gov/about/office_org/headquarters_offices/ast/media/2010-2 Semi-Annual Layout Final.pdf>. Acesso em: 19 Jun. 2012.

FOGEL, L. J.; OWENS, A. J.; WALSH, M. J. Artificial intelligence through

simulated evolution. New York: John Wiley & Sons, 1966. 170 p.

FONSECA, C. M.; FLEMING, P. J. Genetic algorithms for multiobjective optimization: Formulation, discussion and generalization. In: INTERNATIONAL CONFERENCE ON GENETIC ALGORITHMS, 5.,1993, Urbana-Champaign, IL, USA. **Proceedings...** Urbana-Champaign, IL, USA: Mogan Kaufmann, 1993. p. 416–423.

GALSKI, R. L. Desenvolvimento de versões aprimoradas híbridas, paralela e multiobjetivo do método da otimização extrema generalizada e sua aplicação no projeto de sistemas espaciais. 2006. 279 p. (INPE-14795-TDI/1238). Tese (Doutorado em Computação Aplicada) - Instituto Nacional de Pesquisas Espaciais, São José dos Campos, 2006. Disponível em: <http://urlib.net/sid.inpe.br/mtc-m17@80/2006/11.30.19.04>. Acesso em: 13 jan. 2013.

GALSKI, R. L.; RAMOS, F. M.; SOUSA, F. L. Uma Nova Versão Aprimorada do Método da Otimização Extrema Generalizada. In: WORKSHOP DOS CURSOS DE COMPUTAÇÃO APLICADA DO INPE, 5. (WORCAP), 2005, São José dos Campos. **Anais...** São José dos Campos: INPE, 2005. CD-ROM, On-line. Disponível em: http://urlib.net/dpi.inpe.br/hermes2@1905/2005/09.30.19.12. Acesso em: 16 jan. 2013..

GALSKI, R. L.; SOUSA, F. L. de; RAMOS, F. M. Application of a new evolutionary algorithm to the optimum design of a remote sensing satellite constelation. In: INTERNATIONAL CONFERENCE ON INVERSE PROBLEMS IN ENGINEERING: THEORY AND PRACTICE, 5., Jul. 2005, Cambridge, UK. **Proceedings...** Cambridge: D. Lesnic (Ed.), v. II, G01,

GALSKI, R. L.; SOUSA, F. L.; RAMOS, F. M.; MURAOKA, I. Spacecraft Thermal Design With the Generalized Extremal Optimization Algorithm. In: INVERSE PROBLEMS, DESIGN AND OPTIMIZATION SYMPOSIUM, 2004, Rio de Janeiro. **Anais...** Rio de Janeiro, 2004. (INPE-11311-PRE/6748).

GOLDBERG, D. E. Genetic algorithms in search, optimization, and machine learning. 1. ed. Addison-Wesley, 1989. 412 p. ISBN(0201157675).

GOLDBERG, D. E. Genetics Algorithm with sharing for multimodal function optimization. In: INTERNATIONAL CONFERENCE ON GENETIC ALGORITHMS ON GENETIC ALGORITHMS AND THEIR APPLICATION, 2.,1987, San Mateo. **Proceedings...** Hillsdale, NJ, USA: L. Erlbaum Associates Inc., 1987. p. 41-49.

HAEBEL, W. A new approach to provide high-reliability data systems without using space-qualified electronic components. **Acta Astronautica**, v. 55, n. 3–9, p. 563–571, Aug.–Nov. 2004.

HARMS, J.W. Revision of MIL-HDBK-217, reliability prediction of electronic equipment. In: Reliability and MAINTAINABILITY SYMPOSIUM (RAMS), 2010,

Crane, IN, USA. **Proceedings...** Crane, IN, USA: Naval Surface Warfare Center, 2010. p. 1-3. ISBN(9781424451029).

HOLLAND, J. H. **Adaptation in natural and artificial systems**. 1. ed. Ann Arbor: University of Michigan Press, 1975. 183 p. ISBN(9780472084609).

HORN, J.; NAFPLIOTIS, N.; GOLDBERG, D.E. A niched pareto genetic algorithm for multiobjective optimization. In: IEEE Conference on Evolutionary Computation, 1., 1994, Piscataway, N.J. **Proceedings...** Piscataway: IEEE World Congress on Computational Intelligence, IEEE Service Centre, 1994. v. 1, p. 82-87.

INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS (IEEE). **IEEE standard computer dictionary:** a compilation of IEEE standard computer glossaries. New York, NY, 1990. p. 84,. Disponível em: <http://www.idi.ntnu.no/grupper/su/publ/ese/>. Acesso em: 08 Jun. 2011.

INSTITUTO NACIONAL DE PESQUISAS ESPACIAIS (INPE). **CBERS 3&4 Environmental Specification** - RB-EVS-0001-03. São José dos Campos, 2008. Documentação interna Projeto CBERS.

INSTITUTO NACIONAL DE PESQUISAS ESPACIAIS (INPE). **Mass and power analysis** - LTU BAPTA CBERS 3. São José dos Campos, 2007a. Documentação interna Projeto CBERS, 2007a.

INSTITUTO NACIONAL DE PESQUISAS ESPACIAIS (INPE).LTU PSYS. **Mass** and Power Analysis - LTU PSYS CBERS 3. São José dos Campos, 2007b. Documentação interna Projeto CBERS.

JIANG, X. J.; WANG Z. H.; SUN H. X.; CHEN X. M.; ZHAO T. L.; ZHOU C.Y.; YU G. H.; ZHANG L. Suitability analysis of commercial off-the-shelf components for space application. Mechanical Engineers, Part G. **Journal of Aerospace Engineering**, v. 220, n. 5, p. 357-364, May 1, 2006

KAYALI, S. Utilization of COTS electronics in space application, reliability challenges and reality. In: International CMSE Conference, 6., 2002, Los Angeles, California. **Proceedings...** Los Angeles, California, Feb. 2002, p. 175–179.

KEITH, J. W.; MITRA A. K. Integrated circuits and thermal issues: a primer. **SAE Transactions**, v. 112, n.1, p. 123-146, 2003.

KNOWLES, J. D.; CORNE, D. W. The Pareto archived evolution strategy: a new baseline algorithm for Pareto multiobjective optimization. In: CONGRESS ON EVOLUTIONARY COMPUTATION (CEC 99), 1999, Piscataway, N.J., **Proceedings...** Piscataway: IEEE, 1999. v. 1, p. 98-105.

KONAK, A.; COIT, D. W.; SMITH, A. E. Multi-objective optimization using genetic algorithms: a tutorial. **Reliability Engineering and System Safety**, v. 91, n. 9, p. 992–1007, Sept. 2006.

KOZA, J.R. Genetic programming: on the programming of computers by means of natural selection. 6. ed. Cambridge: MIT Press, 1992, 815 p. ISBN(0-262-11170-5).

LIDDLEA, D.; DAVIESA P.; JASONA S.; PAFFETT J.; UNDERWOODB C.; SWEETINGB M. A low-cost geostationary minisatellite platform. In: INTERNATIONAL ASTRONAUTICAL CONGRESS, 54., 2003, Bremen, Germany. **Proceedings...** Bremen, 2003. p. 271-284.

LOPES, I. M. L. **Controle de atitude de satélites rígido-flexíveis usando a otimização extrema generalizada com abordagem multi-objetivo**. 2008. 116 p. (INPE-15384-TDI/1403). Dissertação (Mestrado em Mecânica Espacial e Controle) - Instituto Nacional de Pesquisas Espaciais, São José dos Campos, 2008. Disponível em: http://urlib.net/8JMKD3MGPBW/32LUDEE>. Acesso em: 13 jan. 2013.

LOPES, I. M. L.; SOUSA L. C. G. Design of a nonlinear controller for a rigidflexible satellite using multi-objective Generalized Extremal Optimization with real codification. **Shock and Vibration**, v. 19, n. 5, p. 1-10, 2012. doi: <10.3233/SAV-2012-0702>.

MAHAJAN, R.; RAJ, N.; WAKHARKAR, V.; SWAN, J.; TANG, J.; VANDENTOP, G. Emerging directions for packaging technologies. **Intel® Technology Journal**, v. 6, n. 2, 16 May 2002, ISSN(1535766X).

METAHEURISTICS Network. Disponível em: metaheuristics.net/index.php?main=1. Acesso em: 17 Dez. 2011.

MING L.; PRUESSNER P. S. Reliability practice at NASA Goddard Space Flight Center . In: RELIABILITY AND MAINTAINABILITY SYMPOSIUM (RAMS 2009), 2009, Fort Worth, TX, USA. **Proceedings...** Dort Worth: IEEE, 2009. p. 146-150. ISBN(9781424425082).

NASA. **NASA-EE-INST-002** -Instructions for EEE Parts Selection, Screening, Qualification, and Derating. NASA/TP- 2003 - 212242. Prepared by: Dr. Kusum Sahu. Disponível em: http://nepp.nasa.gov/DocUploads/FFB52B88-36AE-4378-A05B2C084B5EE2CC/EEE-INST-002_add1.pdf. Acesso em: 04 de Jun. 2010

OSTERMAN, M.D.; PECHT, M. Placement for reliability and routability of convectively cooled PWBs. **IEEE Transactions ON Computer-Aided Design of Integrated Circuits and Systems**, v. 9, n. 7, p.734-744, July 1990.

PAPPA, G. L. Seleção de atributos utilizando algoritmos genéticos multiobjetivos. 2002. 84p. Dissertação (Mestrado em Informática Aplicada) -Pontifícia Universidade Católica do Paraná, Curitiba, 2002.

PEREIRA JÚNIOR, A. C. O.; DE SOUSA, F. L.; VLASSOV, V. V. Um estudo para a seleção e posicionamento ótimo de componentes eletrônicos em placas de circuito impresso para aplicação espacial. In: WORKSHOP EM ENGENHARIA E TECNOLOGIA ESPACIAIS, (WETE), 2., São José dos Campos. **Anais...** São José dos Campos: INPE, 2011. DVD. ISBN 2236-2606. Disponível em: http://urlib.net/J8LNKAN8RW/3AFLE4M. Acesso em: 13 jan. 2013.

PEREIRA JUNIOR, A. C. O.; SOUSA, F. L.; VLASSOV, V. Um estudo sobre o posicionamento ótimo de componentes eletrônicos em placas de circuito impresso utilizando algoritmos evolutivos. In: WORKSHOP EM ENGENHARIA E TECNOLOGIA ESPACIAIS (WETE), 1., 2010, São José dos Campos. **Anais...** São José dos Campos: INPE, 2010. Disponível em: http://urlib.net/8JMKD3MGP7W/38UGAQH). Acesso em: 13 jan. 2013.

PIGNOL, M. COTS-based applications in space avionics. In: DESIGN, AUTOMATION & TEST IN EUROPE CONFERENCE & EXHIBITION, 2010, Toulouse, France. **Proceedings...** Toulouse, France: EDAA, 2010. p.1213-1219.

PRITCHARD, B. E.; RAX B. G.; McCLURE S. S. Recent radiation test results at JPL. In: IEEE NUCLEAR AND SPACE RADIATION EFFECTS CONFERENCE, 2003, Monterey, California. **Proceedings...** Monterey, California: IEEE Xplore, 2003. p. 24-33. ISBN(0780381270).

QIN, J.; JOSEPH B. B. Non-arrhenius temperature acceleration and stressdependent voltage acceleration for semiconductor device involving multiple failure mechanisms. **Integrated Reliability Workshop Final Report**, **2006 IEEE International.** 2006. p.93-97. doi: 10.1109/IRWS.2006.305219.

QUEIPO N. V.; HUMPHREY J. A. C.; ORTEGA, A. Multiobjective optimal placement of convectively cooled electronic components on printed wiring boards. **IEEE Transactions on Components, Packaging, and Manufacturing Technology**. Part A, v. 21, n. 1, Mar. 1998.

QUINN N.; BREUER M. A force directed component placement procedure for printed circuit boards. **IEEE Transactions on Circuits and Systems**, CAS-v. 26, n.6, p. 377-388, June 1979.

RECHENBERG, I. **Evolutions strategie**: optimierung technischer systeme nach prinzipien der biologischen evolution. Stuttgart: Frommann-Holzboog, 1973.

RISTO H.; KARJALAINEN M.; LANKINEN R. Verification of the thermal design of electronic equipment. Libella Painopalvelu OY: Technical Research Centre of Finland (VTT), ESPOO, 1997. 99 p. ISBN(9513850722).

SCHAFFER, J. D. Multiple objective optimization with vector evaluated genetic algorithms. Em genetic algorithms and their applications. In: INTERNATIONAL CONFERENCE ON GENETIC ALGORITHMS, 1.,1985, Hillsdale, N.J. **Proceedings...** Hillsdale, N.J.: Lawrence Erlbaum, 1985. p. 93–100.

SOLOMON, M.M. Algorithms for the vehicle routing and scheduling - problems with time window constraints. **Operations Research**, v. 35, p. 254-265, 1987.

SOUSA, F. L. de; RAMOS, F. M.; GALSKI, R. L.; MURAOKA, I. Generalized extremal optimization: a new meta-heuristic inspired by a model of natural evolution. In: DE CASTRO, L. N.; VON ZUBEN, F. J. (Eds.). **Recent** developments in biologically inspired computing. Hershey, PA, USA: Idea Group Inc., Cap. 3, p. 41-60, 2004(a), ISBN(1-59140-312-X).

SOUSA, F. L. de; TAKAHASHI, W. K. Discrete optimal design of trusses by generalized extremal optimization. In: WORLD CONGRESS IN STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 6., 2005, Rio de Janeiro, Brasil. **Proceedings...** Rio de Janeiro: International Society for Structural and Multidisciplinary Optimization (ISSMO), June 2005(a), ISBN(85–285–0070-5).

SOUSA, F. L. **Otimização extrema generalizada**: um novo algoritmo estocástico para o projeto ótimo. 2002. 142 p. (INPE-9564-TDI/836). Tese (Doutorado em Computação Aplicada) - Instituto Nacional de Pesquisas Espaciais, São José dos Campos, 2002. Disponível em: http://urlib.net/sid.inpe.br/marciana/2003/03.18.15.39>. Acesso em: 12 jan. 2013.

SOUSA, F. L.; VLASSOV, V.; RAMOS, F. M. Generalized extremal optimization: an application in heat pipe design. **Applied Mathematical Modeling**, v. 28, n. 10, p. 911-931, Oct. 2004(b).

SOUSA, F.L.; RAMOS, F.M.; P. PAGLIONE, R. M. G. New stochastic algorithm for design optimization. **AIAA Journal**, v. 41, n. 9, p. 1808-1818, Sept. 2003.

SRINIVAS, N,; DEB K. Multiobjective optimization using nondominated sorting in genetic algorithms. **Evolutionary Computation**, MIT Press Cambridge, MA, USA, v. 2, n. 3. p. 221–248, Fall 1994.

SUCUPIRA, R. I. **Métodos heurísticos genérico, meta-heurísticas e hiperheurísticas.** 2004. Disponível em: www.ime.usp.br/~igorrs/monografias/metahiper.pdf. Acesso em: 27/01/2012.

UNITED DEPARTMENT OF STATE. International traffic in arms regulations. 2011.Official Version, Published April 1, 2011. Disponível em: (http://pmddtc.state.gov/regulations_laws/itar_official.html) Acesso em: 09/10/12.

UNITED STATE OF AMERICA. DEPARTMENT OF DEFENSE. **Military Handbook -** Reliability prediction of electronic equipment - MIL-HDBK-217F-Revision F- Notice 2. Washington DC, Feb. 1995.

VAN VELDHUIZEN D. A. LAMONT G. B. On measuring multiobjective evolutionary algorithm performance. In: CONGRESS ON EVOLUTIONARY COMPUTATION, 2000, San Diego CA. **Proceedings...** v. 1, p. 204-211, 2000.

VANDERPLAATS, G. N. **Numerical optimization techniques for engineering design.** 3. ed. Colorado Springs: Vanderplaats Research & Development, 1999. 441p. ISBN(978-0944956007).

VLASSOV, V. A Tool for thermal analysis of electronic boards with multiple heat sources and sinks. In: INTERNATIONAL CONFERENCE ON ENVIRONMENTAL SYSTEMS, 2005, Rome. **Proceedings...** Rome: SAE, 2005. (Technical Paper 2005-01-3058) doi:10.4271/2005-01-3058.

VON ZUBEN, F. J. Algoritmos evolutivos para otimização multi-objetivo. Campinas: Unicamp, (2006). Disponível em: (ftp://ftp.dca.fee.unicamp.br/pub/docs/vonzuben/ia707_1s06/ aulas/). Acesso em: 15 de Fev. 2011.

WONG, K. What is wrong with the existing reliability predictions methods? **Quality and Reliability Engineering International**, v. 6, n. 4, p. 251–257, Sept./Oct. 1990.

YANO T. **Uma abordagem evolutiva multiobjetivo para geração automática de casos de teste a partir de máquinas de estados**. 2011. 107 p. Tese (Doutorado em Computação) - Instituto de Computação, Universidade Estadual de Campinas, Campinas, 2011.

YANO, T. ; MARTINS, E. ; SOUSA, F. L. **Aplicação de algoritmos evolutivos na geração automática de dados de teste de conformidade**. In: WORSHOP DE TESTES E TOLERÂNCIA A FALHAS (WTF 2008), 9., 2008, Rio de Janeiro - RJ. **Anais...** Rio de Janeiro: SBC, 2008. p. 43-56.

YAO X. Evolving artificial neural networks. **Proceedings of the IEEE**, v. 87, n. 9, p.1423-1447, Sept. 1999.

ZITZLER, E.; LAUMANNS, M; THIELE, L. **SPEA2**: improving the strength pareto evolutionary algorithm. Zurich Switzerland: Computer Engineering and Networks Laboratory (TIK), Swiss Federal Institute Techonology (ETH), 2001. (Technical Report 103).

ZITZLER, E.; THIELE, L. multiobjective evolutionary algorithms: a comparative study and the strength pareto approach. **IEEE Transactions on Evolutionary Computation**, v. 3, n. 4, p. 257-271, Nov. 1999.

ZITZLER, E.; THIELE, L.; DEB, K. Comparison of multiobjective evolutionary algorithms: empirical results. **Jornal Evolutionary Computation**, v. 8, n. 2, p. 173-195, June 2000.

APENDICE A – PARÂMETROS USADOS PARA O CÁLCULO DA CONFIABILIDADE DOS COMPONENTES

a) Parâmetros para os diversos níveis de qualidade do subconjunto de componentes usados na metodologia.

Nível 1 (C	LASSE S) -	Circuitos integ	rados				1					
Placa	Ref.	Package	Componente	lambda_B	C1	C2	piS	piP	piQ	piE	piL	Ea(eV)
BAPTA	U1	CDIP40	80C32	1	0.1400	0.0150	1	1	0.25	0.5	1.0	0.35
BAPTA	U3	FPC28	UT28F256QLT	1	0.0068	0.0130	1	1	0.25	0.5	1.0	0.60
BAPTA	U9	FPC24	HS565BRH	1	0.0200	0.0087	1	1	0.25	0.5	1.0	0.65
BAPTA	U10	FPC14	LM139	1	0.0100	0.0037	1	1	0.25	0.5	1.0	0.65
BAPTA	U13	TO99	LM108	1	0.0100	0.0020	1	1	0.25	0.5	1.0	0.65
BAPTA	U14	TO99	LM108	1	0.0100	0.0020	1	1	0.25	0.5	1.0	0.65
BAPIA	019	FPC24	HS565BRH	1	0.0200	0.0087	1	1	0.25	0.5	1.0	0.65
BAPIA	022	1099	LM108	1	0.0100	0.0020	1	1	0.25	0.5	1.0	0.65
BAPTA	023	1099	LIVITU8	1	0.0100	0.0020	1	1	0.25	0.5	1.0	0.65
	025	TO39	AU504	1	0.0100	0.0079	1	1	0.25	0.5	1.0	0.55
DAPTA	026	CDIP40	LIVI 1 17	1	0.0100	0.0020	1	1	0.25	0.5	1.0	0.50
DEVE	112	EDC16	54HC373	1	0.1400	0.0150	1	1	0.25	0.5	1.0	0.35
PSYS	1115	EPC16	54HC373	1	0.0100	0.0070	1	1	0.25	0.5	1.0	0.35
PSYS	U16	DIP28	AD574A	1	0.0200	0.0070	1	1	0.25	0.5	1.0	0.65
PSYS	U17	EPC28	HS-1840RH	1	0.0400	0.0129	1	1	0.25	0.5	1.0	0.65
PSYS	U18	TO99	LM108	1	0.0100	0.0020	1	1	0.25	0.5	1.0	0.65
PSYS	U19	DCH0515D	DCH0515D	1	0.0200	0.0026	1	1	0.25	0.5	1.0	0.65
Nível 1 (C	lasse S) - Ro	esistores										
Placa	Ref.	Package	Componente	lambda_B	-	-	piS	piP	piQ	piE	-	-
BAPTA	R37	RLR05C	Res 200K 1/8W	0.0037			0.71	0.057	0.03	0.5		
BAPTA	R40	RLR05C	Res 200K 1/8W	0.0037			0.71	0.057	0.03	0.5		
BAPTA	R56	RLR07C	Res 5R1 1/4W 2%	0.0037			0.71	0.056	0.03	0.5		
BAPTA	RAP1	RLR07C	Res 3R1 1/8W 1%	0.0037			0.93	0.056	0.03	0.5		
BAPTA	R57	RLR20C	Res 12R 1/2W 2%	0.0037			0.74	0.214	0.03	0.5		
BAPTA	R58	RLR20C	Res 12R 1/2W 2%	0.0037			0.73	0.171	0.03	0.5		
PSYS	R46	RLR07C	Res 5R1 1/4W 2%	0.0037			1.74	0.538	0.03	0.5		
PSYS	RAP1	RLR07C	Res 3R1 1/8W 1%	0.0037			0.83	0.274	0.03	0.5		
PSYS	R49	RLR20C	Res 5R1 1/2W 2%	0.0037			0.77	0.276	0.03	0.5		
Nivel 2 (C	ASSE B1)	- Circuitos inte	grados									
Nível 2 (C	LASSE B1)	- Circuitos inte	grados	Jamb da D	64	67	-10	-:D	-:0	-15	-11	E=(-10
Nível 2 (C Placa	LASSE B1) Ref.	- Circuitos inte Package	grados Componente	lambda_B	C1	C2	piS	piP	piQ	piE	piL	Ea(eV)
Nível 2 (Cl Placa BAPTA	LASSE B1) Ref. U1	- Circuitos inte Package CDIP40	componente	lambda_B	C1	C2 0.0150	piS	piP	piQ 1.00	ріЕ 0.5	piL	Ea(eV)
Nível 2 (C Placa BAPTA BAPTA	LASSE B1) Ref. U1 U3	Circuitos inte Package CDIP40 FPC28	grados Componente 80C32 UT28F256QLT	lambda_B 1 1	C1 0.1400 0.0068	C2 0.0150 0.0130	piS 1 1	piP 1 1	piQ 1.00 1.00	piE 0.5 0.5	piL 1.0 1.0	Ea(eV) 0.35 0.60
Nível 2 (Cl Placa BAPTA BAPTA BAPTA	LASSE B1) Ref. U1 U3 U9	- Circuitos inte Package CDIP40 FPC28 FPC24	grados Componente 80C32 UT28F256QLT HS565BRH	lambda_B	C1 0.1400 0.0068 0.0200	C2 0.0150 0.0130 0.0087	piS 1 1 1	piP 1 1 1	piQ 1.00 1.00 1.00	piE 0.5 0.5 0.5	piL 1.0 1.0 1.0	Ea(eV) 0.35 0.60 0.65
Nível 2 (Cl Placa BAPTA BAPTA BAPTA BAPTA	LASSE B1) Ref. U1 U3 U9 U10	Circuitos inte Package CDIP40 FPC28 FPC24 FPC14	Grados Componente 80C32 UT28F256QLT HS565BRH LM139 LM109	lambda_B 1 1 1 1	C1 0.1400 0.0068 0.0200 0.0100	C2 0.0150 0.0130 0.0087 0.0037	piS 1 1 1	piP 1 1 1 1	piQ 1.00 1.00 1.00 1.00	piE 0.5 0.5 0.5 0.5	piL 1.0 1.0 1.0 1.0	Ea(eV) 0.35 0.60 0.65 0.65
Nível 2 (C Placa BAPTA BAPTA BAPTA BAPTA BAPTA	LASSE B1) Ref. U1 U3 U9 U10 U13 U14	Circuitos inte Package CDIP40 FPC28 FPC24 FPC14 TO99	grados Componente 80C32 UT28F256QLT HS565BRH LM139 LM108 LM108	lambda_B 1 1 1 1 1 1	C1 0.1400 0.0068 0.0200 0.0100 0.0100	C2 0.0150 0.0130 0.0087 0.0037 0.0020	piS 1 1 1 1 1	piP 1 1 1 1 1	piQ 1.00 1.00 1.00 1.00 1.00 1.00	piE 0.5 0.5 0.5 0.5 0.5	piL 1.0 1.0 1.0 1.0 1.0 1.0	Ea(eV) 0.35 0.60 0.65 0.65 0.65
Nivel 2 (C Placa BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA	LASSE B1) - Ref. U1 U3 U9 U10 U13 U14 U14	Circuitos inte Package CDIP40 FPC28 FPC24 FPC14 TO99 TO99 EPC24	grados Componente 80C32 UT28F256QLT HS665BRH LM139 LM108 LM108 LM108 HS565BPH	lambda_B 1 1 1 1 1 1 1 1	C1 0.1400 0.0068 0.0200 0.0100 0.0100 0.0100 0.0200	C2 0.0150 0.0130 0.0087 0.0037 0.0020 0.0020 0.0020	piS 1 1 1 1 1 1 1	piP 1 1 1 1 1 1 1	piQ 1.00 1.00 1.00 1.00 1.00 1.00	piE 0.5 0.5 0.5 0.5 0.5 0.5 0.5	piL 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Ea(eV) 0.35 0.60 0.65 0.65 0.65 0.65
Nivel 2 (C Placa BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA	LASSE B1) - Ref. U1 U3 U9 U10 U13 U14 U19 U122	Circuitos inte Package CDIP40 FPC28 FPC24 FPC14 TO99 TO99 FPC24 TO99	grados Componente 80C32 UT28F256QLT HS565BRH LM108 LM108 HS565BRH LM108 MS656BRH	lambda_B 1 1 1 1 1 1 1 1 1 1 1	C1 0.1400 0.0068 0.0200 0.0100 0.0100 0.0100 0.0200 0.0100	C2 0.0150 0.0130 0.0087 0.0020 0.0020 0.0020 0.0087 0.0020	piS 1 1 1 1 1 1 1 1 1	piP 1 1 1 1 1 1 1 1 1 1	piQ 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	piE 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	piL 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Ea(eV) 0.35 0.60 0.65 0.65 0.65 0.65 0.65 0.65
Nivel 2 (C Placa BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA	LASSE B1) - Ref. U1 U3 U9 U10 U13 U14 U19 U22 U23	- Circuitos inte Package CDIP40 FPC28 FPC24 FPC14 TO99 FPC24 TO99 FPC24 TO99 TO99	grados Componente 80C32 UT28F256QLT HS565BRH LM139 LM108 LM108 HS565BRH LM108 LM108 HS565BRH LM108 LM108 HS665BRH LM108 HS656BRH LM108	lambda_B 1 1 1 1 1 1 1 1 1 1 1 1 1	C1 0.1400 0.0068 0.0200 0.0100 0.0100 0.0100 0.0200 0.0100 0.0100	C2 0.0150 0.0130 0.0087 0.0037 0.0020 0.0020 0.0087 0.0020 0.0087	piS 1 1 1 1 1 1 1 1 1 1 1	piP 1 1 1 1 1 1 1 1 1 1 1 1	piQ 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	piE 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	piL 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Ea(eV) 0.35 0.60 0.65 0.65 0.65 0.65 0.65 0.65 0.6
Nivel 2 (C Placa BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA	LASSE B1) Ref. U1 U3 U9 U10 U13 U14 U19 U22 U23 U25	Circuitos inte Package CDIP40 FPC28 FPC24 FPC14 TO99 FPC24 TO99 TO99 TO99 TO99	grados Componente 80C32 UT28F256QLT HS565BRH LM108 LM108 HS565BRH LM108 HS565BRH LM108 HS665BRH LM108 HS665BRH LM108 AD584	lambda_B 1 1 1 1 1 1 1 1 1 1 1 1 1	C1 0.1400 0.0068 0.0200 0.0100 0.0100 0.0100 0.0200 0.0100 0.0100 0.0100	C2 0.0150 0.0130 0.0087 0.0020 0.0020 0.0087 0.0020 0.0087 0.0020 0.0020 0.0020	piS 1 1 1 1 1 1 1 1 1 1 1 1 1	piP 1 1 1 1 1 1 1 1 1 1 1 1 1	piQ 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	piE 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	piL 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Ea(eV) 0.35 0.60 0.65 0.65 0.65 0.65 0.65 0.65 0.6
Nivel 2 (C Placa BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA	LASSE B1) Ref. U1 U3 U9 U10 U13 U14 U19 U22 U23 U25 U26	Circuitos inte Package CDIP40 FPC28 FPC24 FPC14 TO99 TO99 TO99 TO99 TO99 TO99 TO99	grados Componente 80C32 UT28F256QLT HS565BRH LM108 HS565BRH LM108 HS565BRH LM108 HS565BRH LM108 LM108 LM108 LM108 LM108 LM108 LM564 LM17	lambda_B 1 1 1 1 1 1 1 1 1 1 1 1 1	C1 0.1400 0.0068 0.0200 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100	C2 0.0150 0.0130 0.0087 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0079 0.0020	piS 1 1 1 1 1 1 1 1 1 1 1 1 1	piP 1 1 1 1 1 1 1 1 1 1 1 1 1 1	piQ 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	piE 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	piL 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Ea(eV) 0.35 0.60 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.35 0.50
Nivel 2 (C Placa BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA PSYS	LASSE B1) Ref. U1 U3 U9 U10 U13 U14 U19 U22 U23 U25 U26 U1	- Circuitos inte Package CDIP40 FPC28 FPC24 FPC14 TO99 TO99 TO99 TO99 TO99 TO99 TO99 TO9	grados Componente 80C32 UT28F256QLT HS565BRH LM108 B0532	lambda_B 1 1 1 1 1 1 1 1 1 1 1 1 1	C1 0.1400 0.0068 0.0200 0.0100 0.0100 0.0200 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100	C2 0.0150 0.0130 0.0087 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020	piS 1 1 1 1 1 1 1 1 1 1 1 1 1	piP 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	piQ 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	piE 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	piL 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Ea(eV) 0.35 0.60 0.65 0.65 0.65 0.65 0.65 0.65 0.6
Nivel 2 (C Placa BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA PSYS	LASSE B1) Ref. U1 U3 U9 U10 U10 U13 U14 U19 U22 U23 U25 U26 U1 U2	- Circuitos inte Package CDIP40 FPC28 FPC24 FPC14 TO99 FPC24 TO99 TO99 TO99 TO99 TO99 TO99 TO99 TO9	grados Componente 80C32 UT28F256QLT HS565BRH LM108 JAD584 LM117 80C32 54HC373	lambda_B 1 1 1 1 1 1 1 1 1 1 1 1 1	C1 0.1400 0.0068 0.0200 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.1400 0.0100	C2 0.0150 0.0087 0.0087 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020	piS	piP 1 1 1 1 1 1 1 1 1 1 1 1 1	piQ 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	piE 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	piL 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Ea(eV) 0.35 0.60 0.65 0.65 0.65 0.65 0.65 0.65 0.6
Nivel 2 (C Placa BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA PSYS PSYS	LASSE B1) Ref. U1 U3 U9 U10 U13 U14 U19 U22 U23 U25 U26 U1 U2 U25 U26 U1 U2 U25 U26 U1 U2 U2 U2 U2 U2 U2 U2 U2 U2 U2	Circuitos inte Package CDIP40 FPC28 FPC24 FPC14 TO99 FPC24 TO99 TO39 CDIP40 FPC16 FPC16	grados Componente 80C32 UT28F256QLT HS665BRH LM108 LM108 HS665BRH LM108 HS665BRH LM108 HS665BRH LM108 HS663BRH LM108 AD584 LM117 80C32 54HC373 54HC373	lambda_B 1 1 1 1 1 1 1 1 1 1 1 1 1	C1 0.1400 0.0068 0.0200 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100	C2 0.0150 0.0130 0.0087 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0070	piS 1 1 1 1 1 1 1 1 1 1 1 1 1	piP 1 1 1 1 1 1 1 1 1 1 1 1 1	piQ 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	piE 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	piL 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Ea(eV) 0.35 0.60 0.65 0.65 0.65 0.65 0.65 0.35 0.35 0.35 0.35
Nivel 2 (C Placa BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA	LASSE B1) Ref. U1 U3 U9 U10 U13 U14 U19 U22 U23 U25 U26 U1 U2 U15 U16	Circuitos inte Package CDIP40 FPC28 FPC24 FPC14 TO99 TO99 FPC24 TO99 TO99 TO99 TO99 TO39 CDIP40 FPC16 FPC16 DIP28	grados Componente 80C32 UT28F256QLT HS565BRH LM108 HS6565BRH LM108 HS565BRH LM108 LM108 LM108 LM108 LM108 S4D584 LM117 80C32 54HC373 AD574A	lambda_B 1 1 1 1 1 1 1 1 1 1 1 1 1	C1 0.1400 0.0068 0.0200 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.1400 0.0100 0.0100 0.0100 0.0100 0.0100 0.0200	C2 0.0150 0.0037 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0070 0.0070	piS 1 1 1 1 1 1 1 1 1 1 1 1 1	piP 1 1 1 1 1 1 1 1 1 1 1 1 1	piQ 1.00	piE 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	piL 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Ea(eV) 0.35 0.60 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.35 0.35 0.35 0.35 0.35 0.35
Nivel 2 (C Placa BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA	LASSE B1) Ref. U1 U3 U9 U10 U13 U14 U19 U22 U23 U25 U26 U26 U11 U2 U15 U16 U17	- Circuitos inte Package CDIP40 FPC28 FPC24 FPC14 TO99 TO99 TO99 TO99 TO99 TO99 TO99 TO99 TO99 TO39 CDIP40 FPC16 FPC16 FPC16 FPC28 FPC28	grados Componente 80C32 UT28F256QLT HS565BRH LM108 LM108 LM108 LM108 LM108 S656BRH LM108 S656BRH LM108 S6563 HS108 LM108 AD584 LM117 80032 54HC373 AD574A HS-1840RH	lambda_B 1 1 1 1 1 1 1 1 1 1 1 1 1	C1 0.1400 0.0068 0.0200 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0200 0.0400	C2 0.0150 0.0130 0.0087 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0079 0.0020 0.0150 0.0150 0.0070 0.0070 0.0070	piS 1 1 1 1 1 1 1 1 1 1 1 1 1	piP 1 1 1 1 1 1 1 1 1 1 1 1 1	piQ 1.00	piE 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	piL 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Ea(eV) 0.35 0.60 0.65 0.65 0.65 0.65 0.65 0.65 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.65
Nivel 2 (C Placa BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA PSYS PSYS PSYS PSYS PSYS	LASSE B1) Ref. U1 U3 U9 U10 U13 U14 U19 U22 U25 U26 U1 U2 U15 U16 U17 U18	Circuitos inte Package CDIP40 FPC28 FPC24 FPC14 TO99 FO99 TO99 TO190 TO100 TO100 TO100 TO100	grados Componente 80C32 UT28F256QLT HS665BRH LM108 LM108 LM108 LM108 LM108 S665BRH LM108 LM108 S665BRH LM108 LM108 S665BRH LM108 S665BRH LM108 AD584 LM117 80C32 54HC373 54HC373 AD574A HS-1840RH LM108	lambda_B 1 1 1 1 1 1 1 1 1 1 1 1 1	C1 0.1400 0.0068 0.0200 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0400 0.0100	C2 0.0150 0.0130 0.0087 0.0020 0.0020 0.0020 0.0020 0.0020 0.0079 0.0020 0.0150 0.0070 0.0070 0.0070 0.0129 0.0129	piS 1 1 1 1 1 1 1 1 1 1 1 1 1	piP 1 1 1 1 1 1 1 1 1 1 1 1 1	piQ 1.00	piE 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	piL 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Ea(eV) 0.35 0.60 0.65 0.65 0.65 0.65 0.65 0.35 0.35 0.35 0.35 0.35 0.35 0.65 0.65
Nivel 2 (C Placa BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA PSYS PSYS PSYS PSYS PSYS PSYS	LASSE B1) Ref. U1 U3 U9 U10 U13 U14 U19 U22 U23 U25 U26 U1 U22 U25 U26 U15 U16 U17 U18 U19	Circuitos inte Package CDIP40 FPC28 FPC24 FPC14 TO99 FPC24 TO99 FPC24 TO99 TO109 TO109 FPC16 FPC28 FPC28 TO99 DCH0515D	grados Componente 80C32 UT28F256QLT HS565BRH LM108 LM108 HS565BRH LM108 HS565BRH LM108 HS565BRH LM108 S4HC373 54HC373 54HC373 AD574A HS-1840RH LM108 DCH0515D	lambda_B 1 1 1 1 1 1 1 1 1 1 1 1 1	C1 0.1400 0.0068 0.0200 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0200	C2 0.0150 0.0130 0.0037 0.0020 0.0020 0.0020 0.0020 0.0020 0.0079 0.0020 0.0079 0.0020 0.0150 0.0070 0.0070 0.0070 0.0102 0.0129 0.0026	piS 1 1 1 1 1 1 1 1 1 1 1 1 1	piP 1 1 1 1 1 1 1 1 1 1 1 1 1	piQ 1.00	piE 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	piL 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Ea(eV) 0.35 0.60 0.65 0.65 0.65 0.65 0.65 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.65 0.65 0.65
Nivel 2 (C Placa BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTS PSYS PSYS PSYS PSYS PSYS PSYS PSYS	LASSE B1) Ref. U1 U3 U9 U10 U13 U14 U19 U22 U25 U26 U1 U2 U25 U26 U1 U2 U15 U16 U17 U18 U19 ARF, ARF, ARF, ARF, ARF, ARF, ARF, ARF,	- Circuitos inte Package CDIP40 FPC28 FPC24 FPC14 TO99 FPC24 TO99 TO99 TO99 TO99 TO99 TO99 TO99 TO39 CDIP40 FPC16 FPC16 DIP28 FPC28 TO99 DCH0515D	grados Componente 80C32 UT28F256QLT HS665BRH LM108 LM108 LM108 LM108 LM108 S656BRH LM108 S6565BRH LM108 LM108 AD584 LM117 80C32 54HC373 54HC373 AD574A HS-1840RH LM108 DCH0515D	lambda_B 1 1 1 1 1 1 1 1 1 1 1 1 1	C1 0.1400 0.0068 0.0200 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0200	C2 0.0150 0.0130 0.0087 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0079 0.0020 0.0150 0.0070 0.0070 0.0070 0.0129 0.0026	piS 1 1 1 1 1 1 1 1 1 1 1 1 1	piP 1 1 1 1 1 1 1 1 1 1 1 1 1	piQ 1.00	piE 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	piL 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Ea(eV) 0.35 0.60 0.65 0.65 0.65 0.65 0.65 0.65 0.35 0.35 0.35 0.35 0.35 0.35 0.65 0.65 0.65 0.65
Nivel 2 (C Placa BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA PSYS PSYS PSYS PSYS PSYS PSYS PSYS PSY	LASSE B1). Ref. U1 U3 U9 U10 U13 U14 U19 U22 U23 U25 U26 U1 U2 U15 U16 U17 U18 U19 U19 U28 U29 U26 U10 U29 U26 U10 U29 U26 U26 U26 U27 U26 U27 U27 U27 U27 U27 U27 U27 U27	- Circuitos inte Package CDIP40 FPC28 FPC24 FPC14 TO99 FPC24 TO99 FPC24 TO99 TO99 TO99 TO99 TO99 TO99 TO99 TO99 TO99 TO99 TO99 TO99 TO99 TO99 DO99 TO99 DO99 TO99 TO99 DO99 TO99 CDIP40 FPC16 FPC16 FPC16 DIP28 FPC28 FPC28 FPC29 DCH0515D Backage	grados Componente 80C32 UT28F256QLT HS565BRH LM139 LM108 HS565BRH LM108 LM108 AD584 LM117 80C32 54HC373 54HC373 54HC373 54HC373 AD574A HS-1840RH LM108 DCH0515D	lambda_B 1 1 1 1 1 1 1 1 1 1 1 1 1	C1 0.1400 0.0068 0.0200 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0200	C2 0.0150 0.0130 0.0087 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0079 0.0020 0.0150 0.0070 0.0070 0.0102 0.0129 0.0026	piS	piP 1 1 1 1 1 1 1 1 1 1 1 1 1	piQ 1.00 1	piE 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	piL 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Ea(eV) 0.35 0.60 0.65 0.65 0.65 0.65 0.65 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.65 0.65 0.65 0.65
Nivel 2 (C Placa BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA PSYS PSYS PSYS PSYS PSYS PSYS PSYS PSY	LASSE B1) Ref. U1 U3 U9 U10 U13 U14 U19 U22 U25 U26 U1 U22 U25 U26 U1 U2 U15 U16 U17 U18 U19 U19 U22 U25 U26 U1 U2 U25 U26 U1 U2 U25 U26 U1 U2 U25 U26 U1 U2 U25 U26 U27 U26 U27 U27 U27 U27 U27 U27 U27 U27	- Circuitos inte Package CDIP40 FPC28 FPC24 FPC14 TO99 TO99 FPC24 TO99 TO99 TO99 TO99 TO99 TO99 TO99 TO99 TO99 TO99 TO99 TO99 TO99 TO99 DDP40 FPC16 FPC16 DIP28 FPC28 FPC28 TO99 DCH0515D esistores Package	grados Componente 80C32 UT28F256QLT HS665BRH LM139 LM108 LM108 LM108 LM108 LM108 AD584 LM117 80C32 54HC373 54HC373 54HC373 54HC373 AD574A HS-1840RH LM108 DCH0515D Componente Dc- 200/C 470M	lambda_B 1 1 1 1 1 1 1 1 1 1 1 1 1	C1 0.1400 0.0068 0.0200 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0200 0.0400 0.0200	C2 0.0150 0.0130 0.0087 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0079 0.0020 0.0079 0.0020 0.0070 0.0070 0.0070 0.0102 0.0129 0.0026	piS	piP 1 1 1 1 1 1 1 1 1 1 1 1 1	piQ 1.00	piE 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	piL 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Ea(eV) 0.35 0.60 0.65 0.65 0.65 0.65 0.65 0.35 0.35 0.35 0.35 0.35 0.35 0.65
Nivel 2 (C Placa BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA PSYS PSYS PSYS PSYS PSYS PSYS PSYS PSY	LASSE B1) Ref. U1 U3 U9 U10 U13 U14 U19 U22 U23 U25 U26 U1 U22 U25 U26 U1 U15 U16 U17 U18 U19 U19 U22 U23 U26 U1 U2 U26 U1 U1 U3 U27 U27 U28 U28 U28 U28 U28 U28 U28 U28	- Circuitos inte Package CDIP40 FPC28 FPC24 FPC14 TO99 FPC24 TO99 TO99 TO99 TO99 TO39 CDIP40 FPC16 FPC16 FPC16 DIP28 FPC28 FPC28 TO99 DCH0515D esistores Package RLR05C	grados Componente 80C32 UT28F256QLT HS665BRH LM108 LM108 HS665BRH LM108 LM108 AD584 LM108 AD584 LM117 80C32 54HC373 S4HC373 S4HC373 AD574A HS-1840RH LM108 DCH0515D Componente Res 200K 1/8W	lambda_B 1 1 1 1 1 1 1 1 1 1 1 1 1	C1 0.1400 0.0068 0.0200 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0200 0.0400 0.0200 0.0400 0.0200 0.0200 0.0100 0.0200 0.0100 0.0200 0.0100 0.0200 0.0100 0.0200 0.0100 0.0200 0.0100 0.0200 0.	C2 0.0150 0.0130 0.0087 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0070 0.0020 0.0070 0.0070 0.0070 0.0070 0.0020 0.0102 0.0129 0.0020 0.0026	piS 1 1 1 1 1 1 1 1 1 1 1 1 1	piP 1 1 1 1 1 1 1 1 1 1 1 1 1	piQ 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	piE 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	piL 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Ea(eV) 0.35 0.60 0.65 0.65 0.65 0.65 0.65 0.65 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.6
Nivel 2 (C Placa BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA PSYS PSYS PSYS PSYS PSYS PSYS PSYS PSY	LASSE B1) Ref. U1 U3 U9 U10 U13 U14 U19 U22 U25 U26 U26 U26 U27 U15 U16 U17 U18 U19 U19 Ref. R37 R400 Dcc	- Circuitos inte Package CDIP40 FPC28 FPC24 FPC14 TO99 TO99 TO99 TO99 TO99 TO99 TO99 TO99 TO99 TO99 TO99 TO99 TO99 DCIP40 FPC16 FPC16 FPC16 FPC16 SPC28 TO99 DCH0515D esistores Package RLR05C RLR05C RLR05C	grados Componente 80C32 UT28F256QLT HS565BRH LM108 DA584 LM17 80032 54HC373 AD574A HS-1840RH LM108 DCH0515D Componente Res 200K 1/8W Res 200K 1/8W Res 200K 1/8W	lambda_B 1 1 1 1 1 1 1 1 1 1 1 1 1	C1 0.1400 0.0068 0.0200 0.0100 0.0200 0.0100 0.0200 0.0100 0.0200 0.	C2 0.0150 0.0330 0.0087 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0079 0.0020 0.0079 0.0020 0.0070 0.0070 0.0070 0.0020 0.0070 0.0020 0.	piS 1 1 1 1 1 1 1 1 1 1 1 1 1	piP 1 1 1 1 1 1 1 1 1 1 1 1 1	piQ 1.00	piE 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	piL 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Ea(eV) 0.35 0.60 0.65 0.65 0.65 0.65 0.65 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.65 0.35 0.35 0.65
Nivel 2 (C Placa BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA PSYS PSYS PSYS PSYS PSYS PSYS PSYS PSY	LASSE B1) Ref. U1 U3 U9 U10 U13 U14 U19 U22 U25 U26 U2 U25 U26 U15 U16 U17 U18 U19 U17 U18 U19 Safe, - Ref. R37 R40 R56 D4P1	- Circuitos inte Package CDIP40 FPC28 FPC24 FPC14 FPC14 TO99 TO99 TO99 TO99 TO99 TO99 TO99 TO99 TO99 TO99 TO99 TO99 TO99 TO99 TO99 TO99 TO99 CDIP40 FPC16 FPC16 FPC16 SPC28 TO99 DCH0515D esistores Package RLR05C RLR05C RLR05C RLR07C	grados Componente 80C32 UT28F256QLT HS565BRH LM108 LM108 LM108 LM108 LM108 LM108 LM108 AD584 LM108 LM108 AD584 LM117 80C32 54HC373 54HC373 54HC373 54HC373 54HC373 D574A HS-1840RH LM108 DCH0515D Componente Res 200K 1/8W Res 501 1/4W 29% Dea 3B1 1/4W 29%	lambda_B 1 1 1 1 1 1 1 1 1 1 1 1 1	C1 0.1400 0.0068 0.0200 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0200 0.0100 0.0200	C2 0.0150 0.0330 0.0087 0.0020 0.0020 0.0020 0.0020 0.0020 0.0079 0.0020 0.0079 0.0020 0.0070 0.0070 0.0070 0.0150 0.0020 0.0020 0.0020 0.0020	piS 1 1 1 1 1 1 1 1 1 1 1 1 1	piP 1 1 1 1 1 1 1 1 1 1 1 1 1	piQ 1.00	piE 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	piL 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Ea(eV) 0.35 0.60 0.65 0.65 0.65 0.65 0.65 0.65 0.35 0.35 0.35 0.35 0.35 0.35 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.6
Nivel 2 (C Placa BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA PSYS PSYS PSYS PSYS PSYS PSYS PSYS PSY	LASSE B1) Ref. U1 U3 U9 U10 U13 U9 U10 U14 U19 U22 U25 U26 U25 U26 U15 U16 U17 U18 U19 U19 U18 U19 Ref. Raf	- Circuitos inte Package CDIP40 FPC28 FPC24 FPC14 TO99 FPC24 TO99 TO99 TO99 TO99 TO39 CDIP40 FPC16 FPC16 FPC16 DIP28 FPC28 TO99 DCH0515D esistores Package RLR05C RLR05C RLR07C RLR07C RLR07C	grados Componente 80C32 UT28F256QLT HS565BRH LM139 LM108 LM108 LM108 LM108 LM108 AD584 LM117 80C32 54HC373 54HC373 54HC373 54HC373 54HC373 AD574A HS-1840RH LM108 DCH0515D Componente Res 200K 1/8W Res 5R1 1/4W 2% Res 5R1 1/4W 2% Res 12R 1/2W 2%	lambda_B 1 1 1 1 1 1 1 1 1 1 1 1 1	C1 0.1400 0.0068 0.0200 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0200 -	C2 0.0150 0.037 0.0037 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0079 0.0020 0.0150 0.0070 0.0070 0.0070 0.0129 0.0026 -	piS 1 1 1 1 1 1 1 1 1 1 1 1 1	piP 1 1 1 1 1 1 1 1 1 1 1 1 1	piQ 1.00 0.10	piE 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	piL 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Ea(eV) 0.35 0.60 0.65 0.65 0.65 0.65 0.65 0.65 0.6
Nivel 2 (C Placa BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA PSYS PSYS PSYS PSYS PSYS PSYS PSYS PSY	LASSE B1) Ref. U1 U3 U9 U10 U13 U14 U19 U22 U23 U25 U26 U23 U25 U26 U11 U12 U15 U16 U17 U18 U19 U19 S16 Ref. R37 R40 R56 RAP1 R57 R58	- Circuitos inte Package CDIP40 FPC28 FPC24 FPC14 TO99 TO99 TO99 TO99 TO99 TO39 CDIP40 FPC16 FPC16 FPC16 FPC16 FPC16 DIP28 FPC28 TO99 DCH0515D esistores Package RLR05C RLR05C RLR07C RLR07C RLR07C RLR07C RLR20C	grados Componente 80C32 UT28F256QLT HS665BRH LM108 LM108 HS665BRH LM108 HS665BRH LM108 HS665BRH LM108 AD534 LM108 AD534 LM117 80C32 54HC373 54HC373 54HC373 AD574A HS-1840RH LM108 DCH0515D Componente Res 200K 1/8W Res 50K 1/8W Res 511 1/4W 2% Res 3R1 1/4W 2% Res 12R 1/2W 2% Res 12R 1/2W 2%	lambda_B 1 1 1 1 1 1 1 1 1 1 1 1 1	C1 0.1400 0.0068 0.0200 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0200 0.0200 0.0200 0.0200	C2 0.0150 0.0130 0.0027 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0070 0.0020 0.0070 0.0070 0.0070 0.0070 0.0020 0.0070 0.0020 0.00000000	piS 1 1 1 1 1 1 1 1 1 1 1 1 1	piP 1 1 1 1 1 1 1 1 1 1 1 1 1	piQ 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	piE 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	piL 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Ea(eV) 0.35 0.60 0.65 0.65 0.65 0.65 0.65 0.35 0.35 0.35 0.35 0.35 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.6
Nivel 2 (C Placa BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA PSYS PSYS PSYS PSYS PSYS PSYS PSYS PSY	LASSE B1) Ref. U1 U3 U9 U10 U13 U14 U19 U23 U25 U26 U26 U26 U27 U26 U11 U2 U15 U15 U16 U17 U18 U19 U19 Ref. R37 R40 R57 R40 R46	- Circuitos inte Package CDIP40 FPC28 FPC24 FPC14 TO99 TO99 TO99 TO99 TO99 TO99 TO99 TO99 TO99 TO99 TO99 TO99 TO99 DCIP40 FPC16 FPC16 FPC16 FPC16 FPC28 TO99 DCH0515D DIP28 FPC28 TO99 DCH0515D Package RLR05C RLR05C RLR07C RLR07C RLR20C RLR20C RLR20C RLR20C	grados Componente 80C32 UT28F256QLT HS565BRH LM108 LM108 LM108 LM108 LM108 LM108 S656BRH LM108 LM108 LM108 AD584 LM17 80032 54HC373 54HC373 AD574A HS-1840RH LM108 DCH0515D Componente Res 200K 1/8W Res 5R1 1/4W V2% Res 11/8W 1% Res 12R 1/2W 2% Res 12R 1/2W 2% Res 5R1 1/4W 2%	lambda_B 1 1 1 1 1 1 1 1 1 1 1 1 1	C1 0.1400 0.0068 0.0200 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0200 0.0400 0.0200 -	C2 0.0150 0.0130 0.0087 0.0037 0.0020 0.0087 0.0020 0.0087 0.0020 0.0079 0.0020 0.0150 0.0070 0.0150 0.0070 0.0129 0.0020	piS 1 1 1 1 1 1 1 1 1 1 1 1 1	piP 1 1 1 1 1 1 1 1 1 1 1 1 1	piQ 1.00 0.10	piE 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	piL 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Ea(eV) 0.35 0.60 0.65 0.65 0.65 0.65 0.65 0.35 0.35 0.35 0.35 0.35 0.35 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.6
Nivel 2 (C Placa BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA PSYS PSYS PSYS PSYS PSYS Nivel 2 (C Placa BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA	LASSE B1) Ref. U1 U3 U9 U10 U10 U11 U14 U19 U22 U25 U26 U25 U26 U25 U26 U27 U15 U16 U17 U18 U19 U17 U18 U19 U17 U18 U19 U22 U55 CR Ref. R37 R40 R66 RAP1 R57 R58 R49 R49 R49 R49 R49 R49 R49 R49	- Circuitos inte Package CDIP40 FPC28 FPC24 FPC14 FPC14 TO99 CDIP40 FPC16 FPC16 FPC16 FPC16 SISTORS REC28 TO99 DCH0515D SISTORS RLR05C RLR07C RLR07C RLR07C RLR07C	Grados Componente 80C32 UT28F256QLT HS565BRH LM108 LM108 LM108 LM108 LM108 S655BRH LM108 LM108 MS655BRH LM108 AD584 LM117 80C32 54HC373 AD574A HS-1840RH LM108 DCH0515D Componente Res 200K 1/8W Res 200K 1/8W Res 3201 1/4W 2% Res 12R 1/2W 2% Res 32R 1/2W 2% Res 32R 1/4W 1%	lambda_B 1 1 1 1 1 1 1 1 1 1 1 1 1	C1 0.1400 0.0068 0.0200 0.0100 0.0200 0.0100 0.0200 0.	C2 0.0150 0.037 0.0087 0.0020 0.0020 0.0020 0.0020 0.0020 0.0079 0.0020 0.0079 0.0020 0.0070 0.0150 0.0070 0.0120 0.0020 0.0	piS 1 1 1 1 1 1 1 1 1 1 1 1 1	piP 1 1 1 1 1 1 1 1 1 1 1 1 1	piQ 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	piE 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	piL 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Ea(eV) 0.35 0.60 0.65 0.65 0.65 0.65 0.65 0.35 0.35 0.35 0.35 0.35 0.35 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.6

Nível 3 (Cl	LASSE B) -	Circuitos integ	grados									
Placa	Ref.	Package	Componente	lambda_B	C1	C2	piS	piP	piQ	piE	piL	Ea(eV)
BAPTA	U1	CDIP40	80C32	1	0.1400	0.0150	1	1	2.00	0.5	1.0	0.35
BAPTA	U3	FPC28	UT28F256QLT	1	0.0068	0.0130	1	1	2.00	0.5	1.0	0.60
BAPTA	U9	FPC24	HS565BRH	1	0.0200	0.0087	1	1	2.00	0.5	1.0	0.65
BAPTA	U10	FPC14	LM139	1	0.0100	0.0037	1	1	2.00	0.5	1.0	0.65
BAPTA	U13	TO99	LM108	1	0.0100	0.0020	1	1	2.00	0.5	1.0	0.65
BAPTA	014	TO99	LM108	1	0.0100	0.0020	1	1	2.00	0.5	1.0	0.65
BAPTA	019	FPC24	HS565BRH	1	0.0200	0.0087	1	1	2.00	0.5	1.0	0.65
BAPTA	022	1099	LIVI108	1	0.0100	0.0020	1	1	2.00	0.5	1.0	0.65
BADTA	025	TO99		1	0.0100	0.0020	1	1	2.00	0.5	1.0	0.05
BAPTA	1126	TO39	LM117	1	0.0100	0.0075	1	1	2.00	0.5	1.0	0.55
PSYS	U1	CDIP40	80C32	1	0 1400	0.0020	1	1	2.00	0.5	1.0	0.35
PSYS	U2	FPC16	54HC373	1	0.0100	0.0070	1	1	2.00	0.5	1.0	0.35
PSYS	U15	FPC16	54HC373	1	0.0100	0.0070	1	1	2.00	0.5	1.0	0.35
PSYS	U16	DIP28	AD574A	1	0.0200	0.0102	1	1	2.00	0.5	1.0	0.65
PSYS	U17	FPC28	HS-1840RH	1	0.0400	0.0129	1	1	2.00	0.5	1.0	0.65
PSYS	U18	TO99	LM108	1	0.0100	0.0020	1	1	2.00	0.5	1.0	0.65
PSYS	U19	DCH0515D	DCH0515D	1	0.0200	0.0026	1	1	2.00	0.5	1.0	0.65
NG LO ICI												
Niver 5 (CI	lasse Pj - K											
Placa	Ref.	Package	Componente	lambda_B	-	-	piS	piP	piQ	piE	-	-
BAPTA	R37	RLR05C	Res 200K 1/8W 2%	0.0037			0.71	0.057	0.30	0.5		
BAPTA	R40	RLR05C	Res 200K 1/8W 2%	0.0037			0.71	0.057	0.30	0.5		
BAPTA	R56	RLR07C	Res 5R1 1/4W 2%	0.0037			0.71	0.056	0.30	0.5		
BAPTA	RAP1	RLRU/C	Res 3R1 1/8W 1%	0.0037			0.93	0.056	0.30	0.5		
BADTA	R57	RLR20C	Res 12R 1/2VV 2%	0.0037			0.74	0.214	0.30	0.5		
PSYS	R/6	RLR20C	Res 5R1 1//W/ 2%	0.0037			1.74	0.538	0.30	0.5		
PSYS	RAP1	RI R07C	Res 3R1 1/8W 1%	0.0037			0.83	0.330	0.30	0.5		
PSYS	R49	RLR20C	Res 5R1 1/2W 2%	0.0037			0.77	0.276	0.30	0.5		
Nível 4 (Cl	LASSE com	ercial) - Circu	itos integrados									
Nível 4 (Cl Placa	LASSE com Ref.	<mark>iercial) - Circu</mark> Package	itos integrados Componente	lambda_B	C1	C2	piS	piP	piQ	piE	piL	Ea(eV)
Nível 4 (Cl Placa BAPTA	LASSE com Ref. U1	<mark>ercial) - Circu</mark> Package CDIP40	itos integrados Componente 80C32	lambda_B	C1 0.1400	C2 0.0150	piS 1	piP 1	piQ 10.00	ріЕ 0.5	piL 1.0	Ea(eV) 0.35
Nível 4 (Cl Placa BAPTA BAPTA	LASSE com Ref. U1 U3	ercial) - Circu Package CDIP40 FPC28	itos integrados Componente 80C32 UT28F256QLT	lambda_B 1 1	C1 0.1400 0.0068	C2 0.0150 0.0130	piS 1	piP 1 1	piQ 10.00 10.00	piE 0.5 0.5	piL 1.0 1.0	Ea(eV) 0.35 0.6
Nível 4 (Cl Placa BAPTA BAPTA BAPTA	LASSE com Ref. U1 U3 U9	Package CDIP40 FPC28 FPC24	itos integrados Componente 80C32 UT28F256QLT HS565BRH	lambda_B 1 1 1	C1 0.1400 0.0068 0.0200	C2 0.0150 0.0130 0.0087	piS 1 1 1	piP 1 1 1	piQ 10.00 10.00 10.00	piE 0.5 0.5 0.5	piL 1.0 1.0 1.0	Ea(eV) 0.35 0.6 0.65
Nivel 4 (Cl Placa BAPTA BAPTA BAPTA BAPTA	LASSE com Ref. U1 U3 U9 U10	Percial) - Circu Package CDIP40 FPC28 FPC24 FPC14	itos integrados Componente 80C32 UT28F256QLT HS565BRH LM139	lambda_B 1 1 1 1 1	C1 0.1400 0.0068 0.0200 0.0100	C2 0.0150 0.0130 0.0087 0.0037	piS 1 1 1	piP 1 1 1	piQ 10.00 10.00 10.00 10.00	piE 0.5 0.5 0.5 0.5	piL 1.0 1.0 1.0 1.0	Ea(eV) 0.35 0.6 0.65 0.65
Nivel 4 (Cl Placa BAPTA BAPTA BAPTA BAPTA BAPTA	LASSE com Ref. U1 U3 U9 U10 U13	Package CDIP40 FPC28 FPC24 FPC14 TO99	itos integrados Componente 80C32 UT28F256QLT HS565BRH LM139 LM108	lambda_B 1 1 1 1 1 1	C1 0.1400 0.0068 0.0200 0.0100 0.0100	C2 0.0150 0.0130 0.0087 0.0037 0.0020	piS 1 1 1 1	piP 1 1 1 1	piQ 10.00 10.00 10.00 10.00 10.00	piE 0.5 0.5 0.5 0.5 0.5	piL 1.0 1.0 1.0 1.0 1.0	Ea(eV) 0.35 0.65 0.65 0.65 0.65
Nivel 4 (Cl Placa BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA	LASSE com Ref. U1 U3 U9 U10 U13 U14	Package CDIP40 FPC28 FPC24 FPC14 TO99 TO99	itos integrados Componente 80C32 UT28F256QLT HS565BRH LM139 LM108 LM108	lambda_B 1 1 1 1 1 1 1 1 1	C1 0.1400 0.0068 0.0200 0.0100 0.0100 0.0100 0.0200	C2 0.0150 0.0130 0.0087 0.0037 0.0020 0.0020 0.0020	piS 1 1 1 1 1 1	piP 1 1 1 1 1 1	piQ 10.00 10.00 10.00 10.00 10.00 10.00	piE 0.5 0.5 0.5 0.5 0.5 0.5	piL 1.0 1.0 1.0 1.0 1.0 1.0	Ea(eV) 0.35 0.6 0.65 0.65 0.65 0.65
Nivel 4 (Cl Placa BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA	LASSE com Ref. U1 U3 U9 U10 U13 U14 U19 U19	ercial) - Circu Package CDIP40 FPC28 FPC24 FPC14 TO99 TO99 FPC24 TO99	itos integrados Componente 80C32 UT28F256QLT HS665BRH LM139 LM108 LM108 HS565BRH UM192	lambda_B 1 1 1 1 1 1 1 1 1 1 1 1 1	C1 0.1400 0.0068 0.0200 0.0100 0.0100 0.0100 0.0200 0.0200	C2 0.0150 0.0130 0.0087 0.0037 0.0020 0.0020 0.0020 0.0087	piS 1 1 1 1 1 1 1	piP 1 1 1 1 1 1 1 1	piQ 10.00 10.00 10.00 10.00 10.00 10.00 10.00	piE 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	piL 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Ea(eV) 0.35 0.65 0.65 0.65 0.65 0.65
Nivel 4 (Cl Placa BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA	LASSE com Ref. U1 U3 U9 U10 U13 U14 U19 U22 U23	ercial) - Circu Package CDIP40 FPC28 FPC24 FPC14 TO99 FPC24 TO99 TO99 TO99 TO99	itos integrados Componente 80C32 UT28F256QLT HS565BRH LM108 LM108 HS565BRH LM108 HS565BRH LM108	lambda_B 1 1 1 1 1 1 1 1 1 1 1 1 1	C1 0.1400 0.0068 0.0200 0.0100 0.0100 0.0100 0.0200 0.0100 0.0100	C2 0.0150 0.0130 0.0087 0.0020 0.0020 0.0087 0.0020 0.0087 0.0020	piS 1 1 1 1 1 1 1 1 1 1	piP 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	piQ 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00	piE 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	piL 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Ea(eV) 0.35 0.65 0.65 0.65 0.65 0.65 0.65 0.65
Nivel 4 (Cl Placa BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA	LASSE com Ref. U1 U3 U9 U10 U13 U14 U19 U22 U23 U25	ercial) - Circu Package CDIP40 FPC28 FPC24 FPC14 TO99 FPC24 TO99 FPC24 TO99 TO99 TO99	itos integrados Componente 80C32 UT28F256QLT HS565BRH LM139 LM108 HS565BRH LM108 LM108 LM108 LM108 LM108 LM108 LM108 LM108 LM108	lambda_B 1 1 1 1 1 1 1 1 1 1 1 1 1	C1 0.1400 0.0068 0.0200 0.0100 0.0100 0.0100 0.0200 0.0100 0.0100 0.0100	C2 0.0150 0.0130 0.0087 0.0020 0.0020 0.0020 0.0087 0.0020 0.0020 0.0020	piS 1 1 1 1 1 1 1 1 1 1 1 1 1	piP 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	piQ 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00	piE 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	piL 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Ea(eV) 0.35 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.6
Nivel 4 (Cl Placa BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA	LASSE com Ref. U1 U3 U9 U10 U13 U14 U19 U22 U23 U25 U26	ercial) - Circu Package CDIP40 FPC28 FPC24 FPC14 TO99 TO99 TO99 TO99 TO99 TO99 TO39	itos integrados Componente 80C32 UT28F256QLT HS565BRH LM139 LM108 HS565BRH LM108 LM108 LM108 LM108 LM108 LM108 LM107	lambda_B 1 1 1 1 1 1 1 1 1 1 1 1 1	C1 0.1400 0.0068 0.0200 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100	C2 0.0150 0.0130 0.0087 0.0037 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020	piS 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	piP 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	piQ 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00	piE 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	piL 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Ea(eV) 0.35 0.6 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.35 0.5
Nivel 4 (Cl Placa BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA	LASSE corr Ref. U1 U3 U9 U10 U13 U14 U19 U22 U23 U25 U26 U1	ercial) - Circu Package CDIP40 FPC28 FPC24 FPC14 TO99 FPC24 TO99 TO99 TO99 TO99 TO99 TO99 CDIP40	itos integrados Componente 80C32 UT28F256QLT HS565BRH LM108 LM108 LM108 LM108 LM108 LM108 LM108 LM108 LM108 LM108 LM108 AD584 LM117 80C32	lambda_B 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	C1 0.1400 0.0068 0.0200 0.0100 0.0100 0.0200 0.0100 0.0100 0.0100 0.0100 0.0100 0.1400	C2 0.0150 0.0130 0.0087 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020	piS 1 1 1 1 1 1 1 1 1 1 1 1 1	piP 1 1 1 1 1 1 1 1 1 1 1 1 1 1	piQ 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00	piE 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	piL 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Ea(eV) 0.35 0.6 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.5 0.35
Nivel 4 (Cl Placa BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA	LASSE corr Ref. U1 U3 U9 U10 U13 U14 U19 U22 U23 U25 U26 U26 U1 U2	ercial) - Circu Package CDIP40 FPC28 FPC24 FPC14 TO99 TO99 TO99 TO99 TO99 TO99 TO99 TO9	itos integrados Componente 80C32 UT28F256QLT HS565BRH LM108 LM108 LM108 LM108 LM108 LM108 LM108 LM108 LM108 LM17 80C32 54HC373	lambda_B 1 1 1 1 1 1 1 1 1 1 1 1 1	C1 0.1400 0.0068 0.0200 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.1400 0.0100	C2 0.0150 0.0087 0.0087 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020	piS 1 1 1 1 1 1 1 1 1 1 1 1 1	piP 1 1 1 1 1 1 1 1 1 1 1 1 1	piQ 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00	piE 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	piL 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Ea(eV) 0.35 0.6 0.65 0.65 0.65 0.65 0.65 0.65 0.65
Nivel 4 (Cl Placa BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA	LASSE con Ref. U1 U3 U9 U10 U13 U14 U19 U22 U23 U26 U1 U25 U26 U1 U2 U2 U2 U2 U2 U2 U15	ercial) - Circu Package CDIP40 FPC28 FPC24 FPC14 TO99 TO99 FPC24 TO99 TO99 TO99 TO99 TO99 TO99 TO99 TO9	itos integrados Componente 80C32 UT28F256QLT HS565BRH LM108 LM108 LM108 LM108 LM108 LM108 LM108 LM108 LM108 S0C32 Garage S4HC373 54HC373	lambda_B 1 1 1 1 1 1 1 1 1 1 1 1 1	C1 0.1400 0.0068 0.0200 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100	C2 0.0150 0.0130 0.0087 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0070 0.0020	piS 1 1 1 1 1 1 1 1 1 1 1 1 1	piP 1 1 1 1 1 1 1 1 1 1 1 1 1	piQ 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00	piE 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	piL 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Ea(eV) 0.35 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.35 0.35 0.35 0.35
Nivel 4 (Cl Placa BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA	LASSE con Ref. U1 U3 U9 U10 U10 U13 U14 U19 U22 U23 U25 U26 U11 U26 U11 U22 U25 U26 U11 U22 U25 U15 U16	ercial) - Circu Package CDIP40 FPC28 FPC24 FPC14 TO99 TO99 TO99 TO99 TO99 TO99 TO99 TO9	itos integrados Componente 80C32 UT28F256QLT HS565BRH LM139 LM108 LM108 HS565BRH LM108 LM108 AD584 LM117 80C32 54HC373 54HC373 AD574A	lambda_B 1 1 1 1 1 1 1 1 1 1 1 1 1	C1 0.1400 0.0068 0.0200 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.1400 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0200	C2 0.0150 0.0130 0.0087 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0070 0.0020 0.0070 0.0070 0.0070 0.0070	piS 1 1 1 1 1 1 1 1 1 1 1 1 1	piP 1 1 1 1 1 1 1 1 1 1 1 1 1	piQ 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00	piE 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	piL 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Ea(eV) 0.35 0.6 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.65
Nivel 4 (Cl Placa BAPTA	LASSE com Ref. U1 U3 U9 U10 U13 U14 U19 U22 U23 U22 U23 U25 U26 U25 U26 U11 U2 U15 U16 U17	ercial) - Circu Package CDIP40 FPC28 FPC24 FPC14 TO99 TO99 TO99 TO99 TO99 TO99 TO99 TO9	itos integrados Componente 80C32 UT28F256QLT HS565BRH LM108 LM108 LM108 LM108 LM108 LM108 LM108 LM108 LM108 LM108 LM108 S844 LM117 80C32 54HC373 54HC373 AD574A HS-1840RH	lambda_B 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	C1 0.1400 0.0068 0.0200 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100	C2 0.0150 0.0087 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0079 0.0020 0.0079 0.0020 0.0070 0.0070 0.0070 0.0070	piS 1 1 1 1 1 1 1 1 1 1 1 1 1	piP 1 1 1 1 1 1 1 1 1 1 1 1 1	piQ 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00	piE 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	piL 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Ea(eV) 0.35 0.6 0.65 0.65 0.65 0.65 0.65 0.65 0.35 0.35 0.35 0.35 0.35 0.35 0.65 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.35 0.35 0.35 0.35 0.65 0.65 0.65 0.65 0.65 0.35 0.35 0.65 0.65 0.65 0.65 0.35 0.65 0.65 0.65 0.65 0.65 0.65 0.35 0.35 0.65 0.65 0.65 0.65 0.65 0.65 0.35 0.65 0.65 0.65 0.65 0.35 0.65 0.55
Nivel 4 (Cl Placa BAPTA	LASSE com Ref. U1 U3 U9 U10 U13 U14 U19 U22 U23 U25 U26 U25 U26 U25 U26 U11 U2 U15 U16 U17 U18	ercial) - Circu Package CDIP40 FPC28 FPC24 FPC14 TO99 TO99 TO99 TO99 TO99 TO99 TO99 TO9	itos integrados Componente 80C32 UT28F256QLT HS565BRH LM108 LM108 LM108 LM108 LM108 S65BRH LM108 LM108 AD584 LM117 80C32 54HC373 54HC373 AD574A HS-1840RH LM108	lambda_B 1 1 1 1 1 1 1 1 1 1 1 1 1	C1 0.1400 0.0068 0.0200 0.0100 0.	C2 0.0150 0.0130 0.0087 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0079 0.0020 0.0079 0.0020 0.0070 0.0070 0.0070 0.0122 0.0020	piS 1 1 1 1 1 1 1 1 1 1 1 1 1	piP 1 1 1 1 1 1 1 1 1 1 1 1 1	piQ 10.00	piE 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	piL 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Ea(eV) 0.35 0.6 0.65 0.65 0.65 0.65 0.65 0.35 0.35 0.35 0.35 0.35 0.35 0.65 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.35 0.35 0.35 0.35 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.35 0.35 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.35 0.35 0.65 0.55
Nivel 4 (Cl Placa BAPTA	LASSE com Ref. U1 U3 U9 U10 U13 U14 U19 U23 U25 U26 U1 U2 U15 U16 U17 U18 U19	ercial) - Circu Package CDIP40 FPC28 FPC24 FPC14 TO99 TO99 TO99 TO99 TO99 TO99 TO99 TO9	itos integrados Componente 80C32 UT28F256QLT HS655BRH LM108 LM108 LM108 LM108 LM108 LM108 S655BRH LM108 LM108 S44C373 54HC373 54HC373 54HC373 AD574A HS-1840RH LM108 DCH0515D	lambda_B 1 1 1 1 1 1 1 1 1 1 1 1 1	C1 0.1400 0.0068 0.0200 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0200	C2 0.0150 0.0130 0.0087 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0079 0.0020 0.0079 0.0020 0.0070 0.0070 0.0070 0.0070 0.0129 0.0120 0.0120	piS 1 1 1 1 1 1 1 1 1 1 1 1 1	piP 1 1 1 1 1 1 1 1 1 1 1 1 1	piQ 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00	piE 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	piL 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Ea(eV) 0.35 0.65 0.65 0.65 0.65 0.65 0.35 0.35 0.35 0.35 0.35 0.35 0.65 0.65 0.65
Nivel 4 (Cl Placa BAPTA BA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAP	LASSE com Ref. U1 U3 U9 U10 U13 U14 U19 U22 U23 U25 U26 U12 U25 U26 U11 U2 U15 U16 U17 U18 U19 N18 U19 N18	ercial) - Circu Package CDIP40 FPC28 FPC24 FPC14 TO99 TO99 TO99 TO99 TO99 TO99 TO99 TO9	itos integrados Componente 80C32 UT28F256QLT HS565BRH LM108 LM108 LM108 LM108 LM108 LM108 LM108 AD584 LM117 80C32 54HC373 54HC373 54HC373 54HC373 54HC373 AD574A HS-1840RH LM108 DCH0515D	lambda_B 1 1 1 1 1 1 1 1 1 1 1 1 1	C1 0.1400 0.0068 0.0200 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0200	C2 0.0150 0.0087 0.0087 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0079 0.0020 0.0079 0.0020 0.0070 0.0070 0.0070 0.0020 0.0020	piS 1 1 1 1 1 1 1 1 1 1 1 1 1	piP 1 1 1 1 1 1 1 1 1 1 1 1 1	piQ 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00	piE 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	piL 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Ea(eV) 0.35 0.6 0.65 0.65 0.65 0.65 0.65 0.35 0.35 0.35 0.35 0.35 0.65 0.35 0.35 0.35 0.65 0.55
Nivel 4 (Cl Placa BAPTA	LASSE com Ref. U1 U3 U9 U10 U13 U14 U19 U22 U25 U26 U1 U22 U15 U16 U17 U17 U18 U19 U17 U18 U19 Ref. Ref.	ercial) - Circu Package CDIP40 FPC28 FPC24 FPC14 TO99 TO99 TO99 TO99 TO99 TO99 TO99 TO9	itos integrados Componente 80C32 UT28F256QLT HS565BRH LM139 LM108 LM108 LM108 LM108 LM108 AD584 LM108 AD584 LM117 80C32 54HC373 54HC37	lambda_B 1 1 1 1 1 1 1 1 1 1 1 1 1	C1 0.1400 0.0068 0.0200 0.0100 0.0200 0.0100 0.0200 0.0100 0.0200 0.	C2 0.0150 0.0130 0.0087 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0079 0.0020 0.0079 0.0020 0.0070 0.0070 0.0070 0.0070 0.0020 0.0020	piS 1 1 1 1 1 1 1 1 1 1 1 1 1	piP 1 1 1 1 1 1 1 1 1 1 1 1 1	piQ 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00	piE 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	piL 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Ea(eV) 0.35 0.65 0.65 0.65 0.65 0.65 0.65 0.35 0.35 0.35 0.35 0.35 0.65 0.35 0.35 0.35 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.35 0.35 0.65 0.55
Nivel 4 (Cl Placa BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA PSYS PSYS PSYS PSYS PSYS PSYS PSYS PSY	LASSE com Ref. U1 U3 U9 U10 U13 U14 U19 U22 U23 U25 U26 U1 U22 U15 U16 U17 U18 U19 U17 U18 U19 Ref. Raf. Raf. Raf. Raf. Raf.	ercial) - Circu Package CDIP40 FPC28 FPC24 FPC14 TO99 TO99 TO99 TO99 TO99 TO99 TO99 TO39 CDIP40 FPC16 FPC16 FPC16 FPC28 TO99 DCH0515D esistores Package RI R05C	itos integrados Componente 80C32 UT28F256QLT HS565BRH LM108 LM108 LM108 LM108 LM108 LM108 LM108 AD584 LM108 AD584 LM117 80C32 54HC373 54HC373 54HC373 54HC373 54HC373 Componente Res 200K 1/8W	lambda_B 1 1 1 1 1 1 1 1 1 1 1 1 1	C1 0.1400 0.0068 0.0200 0.0100 0.0200 0.0100 0.0200 0.	C2 0.0150 0.0130 0.0087 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0079 0.0020 0.0079 0.0020 0.0079 0.0020 0.0070 0.0070 0.0020 0.0020	piS 1 1 1 1 1 1 1 1 1 1 1 1 1	piP 1 1 1 1 1 1 1 1 1 1 1 1 1	piQ 10.000	piE 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	piL 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Ea(eV) 0.35 0.6 0.65 0.65 0.65 0.65 0.65 0.35 0.35 0.35 0.35 0.35 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.6
Nivel 4 (Cl Placa BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA PSYS PSYS PSYS PSYS PSYS PSYS PSYS PSY	LASSE con Ref. U1 U3 U9 U10 U13 U14 U19 U22 U23 U25 U26 U12 U25 U26 U15 U26 U15 U16 U17 U18 U19 U19 Rase M) - R Ref. R37 R40	ercial) - Circu Package CDIP40 FPC28 FPC24 FPC24 FPC24 TO99 TO99 TO99 TO99 TO99 TO39 CDIP40 FPC16 FPC16 DIP28 FPC28 TO99 DCH0515D esistores Package RLR05C RLR05C	itos integrados Componente 80C32 UT28F256QLT HS565BRH LM108 LM108 LM108 LM108 LM108 AD584 LM117 80C32 54HC373 54HC373 54HC373 AD574A HS-1840RH LM108 DCH0515D Componente Res 200K 1/8W	lambda_B 1 1 1 1 1 1 1 1 1 1 1 1 1	C1 0.1400 0.0068 0.0200 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0200 -	C2 0.0150 0.0130 0.0037 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0079 0.0020 0.0070 0.0070 0.0070 0.00129 0.0020 0.0026	piS 1 1 1 1 1 1 1 1 1 1 1 1 1	piP 1 1 1 1 1 1 1 1 1 1 1 1 1	piQ 10.00 10	piE 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	piL 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Ea(eV) 0.35 0.6 0.65 0.65 0.65 0.65 0.65 0.65 0.65
Nivel 4 (Cl Placa BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA PSYS PSYS PSYS PSYS PSYS PSYS PSYS PSY	LASSE com Ref. U1 U3 U9 U10 U13 U14 U19 U22 U23 U25 U26 U26 U11 U2 U15 U16 U17 U18 U19 U19 Ref. Raf.	ercial) - Circu Package CDIP40 FPC28 FPC24 FPC14 TO99 TO99 TO99 TO99 TO99 TO99 TO99 TO99 TO99 TO99 TO99 TO99 TO99 TO99 TO99 DO99 TO99 DC105 SD PC28 TO99 DCH05 SD PC8 RLR05C RLR05C RLR05C	itos integrados Componente 80C32 UT28F256QLT HS565BRH LM108 LM108 LM108 LM108 LM108 LM108 LM108 LM108 LM108 LM108 LM108 LM108 LM108 LM108 LM117 80C32 54HC373 54HC373 54HC373 54HC373 AD574A HS-1840RH LM108 DCH0515D Componente Res 200K 1/8W Res 520K 1/8W	lambda_B 1 1 1 1 1 1 1 1 1 1 1 1 1	C1 0.1400 0.0068 0.0200 0.0100 0.0200 0.0100 0.0200 0.0100 0.0200 0.	C2 0.0150 0.0087 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0079 0.0020 0.0079 0.0020 0.0079 0.0020 0.0070 0.0070 0.0070 0.0070 0.0020 0.00000000	piS 1 1 1 1 1 1 1 1 1 1 1 1 1	piP 1 1 1 1 1 1 1 1 1 1 1 1 1	piQ 10.00	piE 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	piL 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Ea(eV) 0.35 0.6 0.65 0.65 0.65 0.65 0.65 0.65 0.65
Nivel 4 (Cl Placa BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA PSYS PSYS PSYS PSYS PSYS PSYS PSYS PSY	LASSE con Ref. U1 U3 U9 U10 U13 U14 U19 U22 U23 U25 U26 U26 U11 U2 U15 U16 U17 U18 U19 U19 Lasse M) - R Ref. R37 R40 R64 RAP1	ercial) - Circu Package CDIP40 FPC28 FPC24 FPC14 TO99 TO99 TO99 TO99 TO99 TO99 TO99 TO9	itos integrados Componente 80C32 UT28F256QLT HS565BRH LM108 LM108 LM108 LM108 LM108 LM108 LM108 LM108 LM108 LM108 LM108 LM108 LM108 LM108 LM108 LM108 LM107 80C32 54HC373	lambda_B 1 1 1 1 1 1 1 1 1 1 1 1 1	C1 0.1400 0.0068 0.0200 0.0100 0.0200 0.0100 0.0200 0.	C2 0.0150 0.0087 0.0087 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0079 0.0020 0.0020 0.0079 0.0020 0.0079 0.0020 0.0070 0.0020 0.0070 0.0020 0.0070 0.0020 0.	piS 1 1 1 1 1 1 1 1 1 1 1 1 1	piP 1 1 1 1 1 1 1 1 1 1 1 1 1	piQ 10.00 10	piE 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	piL 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Ea(eV) 0.35 0.6 0.65 0.65 0.65 0.65 0.65 0.35 0.35 0.35 0.35 0.35 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.6
Nivel 4 (Cl Placa BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA PSYS PSYS PSYS PSYS PSYS PSYS PSYS PSY	LASSE con Ref. U1 U3 U9 U10 U13 U14 U19 U22 U23 U25 U26 U26 U27 U15 U16 U17 U18 U19 U17 U18 U19 Safe (Raf, (ercial) - Circu Package CDIP40 FPC28 FPC24 FPC14 TO99 TO99 TO99 TO99 TO99 TO99 TO99 TO9	itos integrados Componente 80C32 UT28F256QLT HS565BRH LM108 LM108 LM108 LM108 LM108 LM108 AD584 LM117 80C32 54HC373	lambda_B 1 1 1 1 1 1 1 1 1 1 1 1 1	C1 0.1400 0.0068 0.0200 0.0100 0.0200 0.0100 0.0200 0.	C2 0.0150 0.0087 0.0087 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0079 0.0020 0.0070 0.0070 0.0070 0.0020 0.0070 0.0020 0.0020 0.0020	piS 1 1 1 1 1 1 1 1 1 1 1 1 1	piP 1 1 1 1 1 1 1 1 1 1 1 1 1	piQ 10.00 1.000 1.00 1.00 1.00 1.00 1.00 1.00 1.0000 1.0000 1.0000 1.0000 1.0000	piE 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	piL 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Ea(eV) 0.35 0.6 0.65 0.65 0.65 0.65 0.65 0.35 0.35 0.35 0.35 0.35 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.6
Nivel 4 (Cl Placa BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA PSYS PSYS PSYS PSYS PSYS PSYS PSYS PSY	LASSE con Ref. U1 U3 U9 U10 U13 U14 U19 U22 U25 U26 U1 U22 U15 U16 U17 U17 U18 U19 U17 U18 U19 Ref. Rase M) - R Rase Raf.	ercial) - Circu Package CDIP40 FPC28 FPC24 FPC14 TO99 TO99 TO99 TO99 TO99 TO99 TO99 TO9	itos integrados Componente 80C32 UT28F256QLT HS565BRH LM139 LM108 LM108 LM108 LM108 AD584 LM108 AD584 LM108 AD584 LM117 80C32 54HC373 54HC373 54HC373 54HC373 54HC373 F4HC	lambda_B 1 1 1 1 1 1 1 1 1 1 1 1 1	C1 0.1400 0.0068 0.0200 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0200 -	C2 0.0150 0.0130 0.0087 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0079 0.0020 0.0079 0.0020 0.0070 0.0020 0.0070 0.0020 0.	piS 1 1 1 1 1 1 1 1 1 1 1 1 1	piP 1 1 1 1 1 1 1 1 1 1 1 1 1	piQ 10.00 1.000 1.00	piE 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	piL 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Ea(eV) 0.35 0.6 0.65 0.65 0.65 0.65 0.65 0.65 0.35 0.35 0.35 0.35 0.35 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.6
Nivel 4 (Cl Placa BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA PSYS PSYS PSYS PSYS PSYS PSYS PSYS PSY	LASSE con Ref. U1 U3 U9 U10 U13 U14 U19 U22 U23 U25 U23 U25 U26 U23 U25 U26 U21 U15 U16 U17 U15 U16 U17 U17 U18 Ref. R37 R40 R56 RAP1 R57 R57 R57 R57 R57 R57 R57 R57 R57 R57	ercial) - Circu Package CDIP40 FPC28 FPC24 FPC14 T099 T099 T099 T099 T099 T099 T099 T09	itos integrados Componente 80C32 UT28F256QLT HS565BRH LM108 LM108 LM108 LM108 LM108 LM108 LM108 LM108 LM108 LM108 LM108 LM108 LM108 AD5844 LM108 AD574A HS-1840RH LM108 DCH0515D Componente Res 200K 1/8W Res 5D 1/8W 2% Res 12R 1/2W 2% Res 12R 1/2W 2% Res 5R1 1/4W 2% Res 5R1 1/4W 2%	lambda_B 1 1 1 1 1 1 1 1 1 1 1 1 1	C1 0.1400 0.0068 0.0200 0.0100 0.0200 0.0100 0.0200 0.	C2 0.0150 0.0130 0.0037 0.0020 0.	piS 1 1 1 1 1 1 1 1 1 1 1 1 1	piP 1 1 1 1 1 1 1 1 1 1 1 1 1	piQ 10.00 10	piE 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	piL 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Ea(eV) 0.35 0.6 0.65 0.65 0.65 0.65 0.65 0.65 0.35 0.35 0.35 0.35 0.35 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.6
Nivel 4 (Cl Placa BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA BAPTA PSYS PSYS PSYS PSYS PSYS PSYS PSYS PSY	LASSE con Ref. U1 U3 U9 U10 U13 U14 U19 U22 U23 U22 U23 U25 U26 U11 U2 U15 U16 U17 U16 U17 U18 U19 Ref. R37 R40 R57 R40 R57 R57 R54 R46 RAP1	ercial) - Circu Package CDIP40 FPC28 FPC24 FPC14 T099 T099 T099 T099 T099 T099 T099 T09	itos integrados Componente 80C32 UT28F256QLT HS565BRH LM108 LM108 LM108 LM108 LM108 LM108 LM108 LM108 LM108 LM108 LM108 LM108 LM108 AD5584 LM117 80C32 54HC373 54HC373 54HC373 AD574A HS-1840RH LM108 DCH0515D Componente Res 200K 1/8W Res 5R1 1/4W 2% Res 5R1 1/8W 1% Res 5R1 1/4W 2% Res 3R1 1/8W 1%	lambda_B 1 1 1 1 1 1 1 1 1 1 1 1 1	C1 0.1400 0.0068 0.0200 0.0100 0.0200 0.0100 0.0200 0.0100 0.0200 0.0100 0.0200 0.	C2 0.0150 0.0087 0.0087 0.0020 0.	piS 1 1 1 1 1 1 1 1 1 1 1 1 1	piP 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	piQ 10.00 10	piE 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	piL 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Ea(eV) 0.35 0.6 0.65 0.65 0.65 0.65 0.65 0.35 0.35 0.35 0.35 0.35 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.6

ltem	Componente	Ref.	Part Number	C1	C2	piS	piQ	piE	piL	Tj (oC)	Ea(eV)	piT	Lambda P (FIT)
1	80C32	U1	5962-0051801VQC	0.140	0.015	1	0.25	0.5	1.0	63.9	0.35	0.4824856	18.761997
2	54HC373	U2	9203-059-02B	0.010	0.007	1	0.25	0.5	1.0	62.8	0.35	0.4639691	2.034923
3	UT28F256QLT	U3	5962F9689110VXC	0.007	0.013	1	0.25	0.5	1.0	72.7	0.60	2.5128967	5.896924
4	54HC10	U4	9201-107-02B	0.010	0.004	1	0.25	0.5	1.0	62.8	0.35	0.4639691	1.622423
5	54HC04	U5	9401-033-02B	0.010	0.004	1	0.25	0.5	1.0	62.8	0.35	0.4639691	1.622423
6	CD40109B	U7	5962R9664501VXC	0.010	0.013	1	0.25	0.5	1.0	62.8	0.65	1.7288825	5.934706
7	54HC138	U8	9408-046-02B	0.010	0.005	1	0.25	0.5	1.0	62.8	0.35	0.4639691	1.747423
8	HS565BRH	U9	5962R9675502VXC	0.020	0.009	1	0.25	0.5	1.0	99.9	0.65	16.1465485	81.820242
9	LM139	U10	5962R9673801VDA	0.010	0.004	1	0.25	0.5	1.0	62.6	0.65	1.7047513	4.724378
10	54HC373	U11	9203-059-02B	0.010	0.007	1	0.25	0.5	1.0	62.8	0.35	0.4639691	2.034923
11	54HC373	U12	9203-059-02B	0.010	0.007	1	0.25	0.5	1.0	62.8	0.35	0.4639691	2.034923
12	LM108	U13	5962R9863702VGA	0.010	0.002	1	0.25	0.5	1.0	69.3	0.65	2.6468471	6.867118
13	LM108	U14	5962R9863702VGA	0.010	0.002	1	0.25	0.5	1.0	62.1	0.65	1.6485263	4.371316
14	54HC373	U15	9203-059-02B	0.010	0.007	1	0.25	0.5	1.0	62.8	0.35	0.4639691	2.034923
15	54HC373	U16	9203-059-02B	0.010	0.007	1	0.25	0.5	1.0	62.8	0.35	0.4639691	2.034923
16	54HC4050	U17	9401-038-02B	0.010	0.013	1	0.25	0.5	1.0	62.8	0.65	1.7288825	5.934706
17	CD40109B	U18	5962R9664501VXC	0.010	0.013	1	0.25	0.5	1.0	62.8	0.65	1.7288825	5.934706
18	HS565BRH	U19	5962R9675502VXC	0.020	0.009	1	0.25	0.5	1.0	98.9	0.65	15.2917559	77.546279
19	54HC373	U20	9203-059-02B	0.010	0.007	1	0.25	0.5	1.0	62.8	0.35	0.4639691	2.034923
20	54HC373	U21	9203-059-02B	0.010	0.007	1	0.25	0.5	1.0	62.8	0.35	0.4639691	2.034923
21	LM108	U22	5962R9863702VGA	0.010	0.002	1	0.25	0.5	1.0	65.9	0.65	2.1218428	5.554607
22	LM108	U23	5962R9863702VGA	0.010	0.002	1	0.25	0.5	1.0	62.4	0.65	1.6820550	4.455137
23	54HC4060	U24	9204-076-02B	0.010	0.001	1	0.25	0.5	1.0	62.8	0.65	1.7288825	4.484706
24	AD584	U25	5962R3812801VGA	0.010	0.008	1	0.25	0.5	1.0	74.8	0.35	0.7040089	2.747522
25	LM117	U26	5962R9951703VXA	0.010	0.002	1	0.25	0.5	1.0	64.7	0.50	0.9865655	2.716414

b) Parâmetros para os 155 componentes da PCA LTU BAPTA - Nível 1.

Item	Componente	%	Ref.	Part Number	Lambda b	Tjc	Pi T	Pi S	Pi P	Pi Q	Pi E	Falhas (FIT)
26	METAL FILM RES 15K 1/8W	2%	R2	RLR05C1502GS	0.0037	62.8	1.4202	0.7200	0.0710	0.03	0.5	0.00402925
27	METAL FILM RES 30R1 /8W	2%	R3	RLR05C30R0GS	0.0037	62.8	1.4202	0.7400	0.1200	0.03	0.5	0.00699917
28	METAL FILM RES 5K1 1/8W	2%	R4	RLR05C5101GS	0.0037	62.8	1.4202	0.7100	0.0460	0.03	0.5	0.00257425
29	METAL FILM RES 1K 1/8W	2%	R5	RLR05C1001GS	0.0037	62.8	1.4202	0.9300	0.2560	0.03	0.5	0.01876535
30	METAL FILM RES 1K 1/8W	2%	R6	RLR05C1001GS	0.0037	62.8	1.4202	0.9300	0.2560	0.03	0.5	0.01876535
31	METAL FILM RES 10K 1/8W	2%	R8	RLR05C1002GS	0.0037	62.8	1.4202	0.7300	0.1040	0.03	0.5	0.00598398
32	METAL FILM RES 10K 1/8W	2%	R9	RLR05C1002GS	0.0037	62.8	1.4202	0.7300	0.1040	0.03	0.5	0.00598398
33	METAL FILM RES 10K 1/8W	2%	R10	RLR05C1002GS	0.0037	62.8	1.4202	0.7300	0.1040	0.03	0.5	0.00598398
34	METAL FILM RES 10K 1/8W	2%	R11	RLR05C1002GS	0.0037	62.8	1.4202	0.7300	0.1040	0.03	0.5	0.00598398
35	METAL FILM RES 510R 1/8W	2%	R12	RLR05C5100GS	0.0037	62.8	1.4202	3.7200	0.5210	0.03	0.5	0.15276169
36	METAL FILM RES 100R 1/8W	2%	R13	RLR05C1000GS	0.0037	62.8	1.4202	0.7100	0.0320	0.03	0.5	0.00179078
37	METAL FILM RES 100R 1/8W	2%	R14	RLR05C1000GS	0.0037	62.8	1.4202	0.9300	0.2570	0.03	0.5	0.01883865
38	METAL FILM RES 10K 1/8W	2%	R15	RLR05C1002GS	0.0037	62.8	1.4202	0.8000	0.1900	0.03	0.5	0.01198057
39	METAL FILM RES 4,7K 1/8W	2%	R16	RLR05C4701GS	0.0037	62.8	1.4202	0.9300	0.2570	0.03	0.5	0.01883865
40	METAL FILM RES 200K 1/8W	2%	R17	RLR05C2003GS	0.0037	62.8	1.4202	0.7100	0.0320	0.03	0.5	0.00179078
41	METAL FILM RES 10M 1/8W	2%	R18	RLR07C1005GS	0.0037	62.8	1.4202	0.7100	0.0080	0.03	0.5	0.00044769
42	METAL FILM RES 30K 1/8W	2%	R19	RLR05C3002GS	0.0037	62.8	1.4202	0.7400	0.1250	0.03	0.5	0.00729081
43	METAL FILM RES 30K 1/8W	2%	R20	RLR05C3002GS	0.0037	62.8	1.4202	0.7100	0.0400	0.03	0.5	0.00223847
44	METAL FILM RES 47K 1/8W	2%	R21	RLR05C4702GS	0.0037	62.8	1.4202	0.7100	0.0570	0.03	0.5	0.00318983
45	METAL FILM RES 10K 1/8W	2%	R22	RLR05C1002GS	0.0037	62.8	1.4202	0.7200	0.0650	0.03	0.5	0.00368875
46	METAL FILM RES 10K 1/10W	0.10%	R23	RNC50J1002BS	0.0037	62.8	1.4202	0.7600	0.1330	0.03	0.5	0.00796708
47	METAL FILM RES 100K 1/8W	2%	R24	RLR05C1003GS	0.0037	62.8	1.4202	0.7200	0.0640	0.03	0.5	0.00363200
48	METAL FILM RES 10K 1/10W	0.10%	R25	RNC50J1002BS	0.0037	62.8	1.4202	0.7600	0.1330	0.03	0.5	0.00796708
49	METAL FILM RES 510K 1/8W	2%	R26	RLR05C5103GS	0.0037	62.8	1.4202	0.7100	0.0270	0.03	0.5	0.00151097
50	METAL FILM RES 200K 1/8W	2%	R27	RLR05C2003GS	0.0037	62.8	1.4202	0.7100	0.0410	0.03	0.5	0.00229444
51	METAL FILM RES 5K1 1/10W	0.10%	R28	RNC55J5101BS	0.0037	62.8	1.4202	0.7100	0.0220	0.03	0.5	0.00123116
52	METAL FILM RES 5K1 1/10W	0.10%	R29	RNC55J5101BS	0.0037	62.8	1.4202	0.7100	0.0220	0.03	0.5	0.00123116
53	METAL FILM RES 2K 1/8W	2%	R30	RLR05C2001GS	0.0037	62.8	1.4202	0.7100	0.0220	0.03	0.5	0.00123116
54	METAL FILM RES 100K 1/8W	2%	R31	RLR05C1003GS	0.0037	62.8	1.4202	0.7200	0.0750	0.03	0.5	0.00425625
55	METAL FILM RES 10K 1/8W	2%	R32	RLR05C1002GS	0.0037	62.8	1.4202	0.7300	0.1040	0.03	0.5	0.00598398
56	METAL FILM RES 51R 1/8W	2%	R33	RLR05C51R0GS	0.0037	62.8	1.4202	0.7700	0.1660	0.03	0.5	0.01007471
57	METAL FILM RES 200K 1/8W	2%	R34	RLR05C2003GS	0.0037	62.8	1.4202	0.7100	0.0550	0.03	0.5	0.00307790
58	METAL FILM RES 5K1 1/8W	2%	R35	RLR05C5101GS	0.0037	62.8	1.4202	0.7100	0.0220	0.03	0.5	0.00123116
59	METAL FILM RES 20K 1/8W	2%	R36	RLR05C2002GS	0.0037	62.8	1.4202	0.7100	0.0220	0.03	0.5	0.00123116
60	METAL FILM RES 200K 1/8W	2%	R37	RLR05C2003GS	0.0037	72.8	1.5383	0.7100	0.0570	0.03	0.5	0.00345505
61	METAL FILM RES 10K 1/8W	2%	R38	RLR05C1002GS	0.0037	62.8	1.4202	0.7100	0.0180	0.03	0.5	0.00100731
62	METAL FILM RES 10K 1/10W	0.10%	R39	RNC50J1002BS	0.0037	62.8	1.4202	0.7600	0.1330	0.03	0.5	0.00796708
63	METAL FILM RES 200K 1/8W	2%	R40	RLR05C2003GS	0.0037	71.8	1.5263	0.7100	0.0590	0.03	0.5	0.00354854
64	METAL FILM RES 100K 1/8W	2%	R41	RLR05C1003GS	0.0037	62.8	1.4202	0.7100	0.0540	0.03	0.5	0.00302194
65	METAL FILM RES 10K 1/10W	0.10%	R42	RNC50J1002BS	0.0037	62.8	1.4202	0.7600	0.1330	0.03	0.5	0.00796708
66	METAL FILM RES 100K 1/8W	2%	R43	RLR05C1003GS	0.0037	62.8	1.4202	0.7100	0.0420	0.03	0.5	0.00235040
67	METAL FILM RES 51K 1/8W	2%	R44	RLR05C5102GS	0.0037	62.8	1.4202	0.7100	0.0410	0.03	0.5	0.00229444
68	METAL FILM RES 10K 1/8W	2%	R45	RLR05C1002GS	0.0037	62.8	1.4202	0.7100	0.0220	0.03	0.5	0.00123116

Item	Componente	%	Ref.	Part Number	Lambda b	Tjc	Pi T	Pi S	Pi P	Pi Q	Pi E	Falhas (FIT)
69	METAL FILM RES 200K 1/8W	2%	R46	RLR05C2003GS	0.0037	62.8	1.4202	0.7100	0.0410	0.03	0.5	0.00229444
70	METAL FILM RES 5K1 1/10W	0.10%	R47	RNC55J5101BS	0.0037	62.8	1.4202	0.7100	0.0220	0.03	0.5	0.00123116
71	METAL FILM RES 5K1 1/10W	0.10%	R48	RNC55J5101BS	0.0037	62.8	1.4202	0.7100	0.0220	0.03	0.5	0.00123116
72	METAL FILM RES 2K 1/8W	2%	R49	RLR05C2001GS	0.0037	62.8	1.4202	0.7100	0.0220	0.03	0.5	0.00123116
73	METAL FILM RES 51R 1/8W	2%	R50	RLR05C51R0GS	0.0037	62.8	1.4202	0.7700	0.1660	0.03	0.5	0.01007471
74	METAL FILM RES 51R1 1/10W	0.10%	R51	RNC55J51R1BS	0.0037	62.8	1.4202	0.7900	0.1660	0.03	0.5	0.01033639
75	METAL FILM RES 10K 1/8W	2%	R52	RLR05C1002GS	0.0037	62.8	1.4202	0.7300	0.1040	0.03	0.5	0.00598398
76	METAL FILM RES 20K 1/8W	2%	R53	RLR05C2002GS	0.0037	62.8	1.4202	0.7100	0.0410	0.03	0.5	0.00229444
77	METAL FILM RES 10K 1/8W	2%	R54	RLR05C1002GS	0.0037	62.8	1.4202	0.7100	0.0440	0.03	0.5	0.00246232
78	METAL FILM RES 20K 1/8W	2%	R55	RLR05C2002GS	0.0037	62.8	1.4202	0.7100	0.0580	0.03	0.5	0.00324579
79	METAL FILM RES 5R1 1/4W	2%	R56	RLR07C5R10GS	0.0037	78.3	1.6043	0.7100	0.0560	0.03	0.5	0.00354015
80	METAL FILM RES 12R 1/2W	2%	R57	RLR20C12R0GS	0.0037	61.7	1.4072	0.7400	0.2140	0.03	0.5	0.01236794
81	METAL FILM RES 12R 1/2W	2%	R58	RLR20C12R0GS	0.0037	65.7	1.4541	0.7300	0.1710	0.03	0.5	0.01007390
82	METAL FILM RES 5K1 1/8W	2%	R59	RLR05C5101GS	0.0037	62.8	1.4202	0.7200	0.0740	0.03	0.5	0.00419950
83	METAL FILM RES 240R 1/8W	2%	R60	RLR05C2400GS	0.0037	62.8	1.4202	0.7600	0.1530	0.03	0.5	0.00916513
84	METAL FILM RES 5K1 1/8W	2%	R61	RLR05C5101GS	0.0037	62.8	1.4202	0.7200	0.0740	0.03	0.5	0.00419950
85	METAL FILM RES 620R 1/8W	2%	R62	RLR05C6200GS	0.0037	62.8	1.4202	0.8500	0.2210	0.03	0.5	0.01480625
86	METAL FILM RES 220R 1/2W	5%	R64	RCR20G221JS	0.0037	62.8	1.4202	0.8300	0.3600	0.03	0.5	0.02355127
87	METAL FILM RES 3R1 1/8W	1%	RAP1	RLR07C3R10GS	0.0037	68.4	1.4859	0.9300	0.2580	0.03	0.5	0.01978773

Item	Descricao	%	Tensao	Ref.	Part Number	Lambda b	Temp	Pi T	Pi Cv	Pi V	Pi SR	Pi Q	Pi E	Falhas (FIT)
88	TANT. AXIAL CAP. 22UF	5%	50V	C1	M39003/01-5694	0.0004	62.8	1.93	2.035904	1.00	0.66	0.001	0.5	0.0005190
89	CER. AXIAL CAP. 27PF	10%	100V	C2	M39014/05-2209	0.0010	62.8	4.64	0.387992	1.00	1	0.001	0.5	0.0008914
90	TANT. AXIAL CAP. 10UF	5%	50V	C3	M39003/01-5690	0.0004	62.8	1.93	1.698244	1.00	0.66	0.001	0.5	0.0004329
91	CER. AXIAL CAP. 27PF	10%	100V	C4	M39014/05-2209	0.0010	62.8	4.64	0.387992	1.00	1	0.001	0.5	0.0008914
92	CER. AXIAL CAP. 10KPF	10%	50V	C5	M39014/05-2255	0.0010	62.8	4.64	0.660693	1.06	1	0.001	0.5	0.0016139
93	CER. AXIAL CAP. 10KPF	10%	50V	C6	M39014/05-2255	0.0010	62.8	4.64	0.660693	1.01	1	0.001	0.5	0.0015262
94	CER. AXIAL CAP. 10KPF	10%	50V	C7	M39014/05-2255	0.0010	62.8	4.64	0.660693	1.06	1	0.001	0.5	0.0016139
95	CER. AXIAL CAP. 10KPF	10%	50V	C8	M39014/05-2255	0.0010	62.8	4.64	0.660693	1.06	1	0.001	0.5	0.0016139
96	CER. AXIAL CAP. 10KPF	10%	50V	C9	M39014/05-2255	0.0010	62.8	4.64	0.660693	1.01	1	0.001	0.5	0.0015290
97	CER. AXIAL CAP. 220KPF	10%	50V	C9	M39014/05-2303	0.0010	62.8	4.64	0.872606	1.01	1	0.001	0.5	0.0020194
98	CER. AXIAL CAP. 10KPF	10%	50V	C10	M39014/05-2255	0.0010	62.8	4.64	0.660693	1.06	1	0.001	0.5	0.0016139
99	CER. AXIAL CAP. 10KPF	10%	50V	C11	M39014/05-2255	0.0010	62.8	4.64	0.660693	1.06	1	0.001	0.5	0.0016139
100	CER. AXIAL CAP. 10PF	10%	100V	C13	M39014/05-2201	0.0010	62.8	4.64	0.354813	1.00	1	0.001	0.5	0.0008162
101	CER. AXIAL CAP. 220KPF	10%	50V	C14	M39014/05-2303	0.0010	62.8	4.64	0.872606	1.01	1	0.001	0.5	0.0020194
102	CER. AXIAL CAP. 33PF	10%	100V	C15	M39014/05-2210	0.0010	62.8	4.64	0.395063	1.01	1	0.001	0.5	0.0009142
103	CER. AXIAL CAP. 33PF	10%	100V	C16	M39014/05-2210	0.0010	62.8	4.64	0.395063	1.01	1	0.001	0.5	0.0009142

ltem	Descricao	%	Tensao	Ref.	Part Number	Lambda b	Temp	Pi T	Pi Cv	Pi V	Pi SR	Pi Q	Pi E	Falhas (FIT)
104	CER. AXIAL CAP. 10KPF	10%	50V	C17	M39014/05-2255	0.0010	62.8	4.64	0.660693	1.06	1	0.001	0.5	0.0016139
105	CER. AXIAL CAP. 10KPF	10%	50V	C18	M39014/05-2255	0.0010	62.8	4.64	0.660693	1.06	1	0.001	0.5	0.0016139
106	CER. AXIAL CAP. 10KPF	10%	50V	C19	M39014/05-2255	0.0010	62.8	4.64	0.660693	1.06	1	0.001	0.5	0.0016139
107	CER. AXIAL CAP. 10KPF	10%	50V	C20	M39014/05-2255	0.0010	62.8	4.64	0.660693	1.06	1	0.001	0.5	0.0016139
108	CER. AXIAL CAP. 10KPF	10%	50V	C21	M39014/05-2255	0.0010	62.8	4.64	0.660693	1.06	1	0.001	0.5	0.0016139
109	CER. AXIAL CAP. 10KPF	10%	50V	C22	M39014/05-2255	0.0010	62.8	4.64	0.660693	1.06	1	0.001	0.5	0.0016139
110	CER. AXIAL CAP. 10KPF	10%	50V	C23	M39014/05-2255	0.0010	62.8	4.64	0.660693	1.06	1	0.001	0.5	0.0016139
111	CER. AXIAL CAP. 10PF	10%	100V	C24	M39014/05-2201	0.0010	62.8	4.64	0.354813	1.00	1	0.001	0.5	0.0008162
112	CER. AXIAL CAP. 100KPF	10%	50V	C25	M39014/05-2291	0.0010	62.8	4.64	0.812831	1.06	1	0.001	0.5	0.0019855
113	CER. AXIAL CAP. 33PF	10%	100V	C26	M39014/05-2210	0.0010	62.8	4.64	0.395063	1.01	1	0.001	0.5	0.0009142
114	CER. AXIAL CAP. 33PF	10%	100V	C27	M39014/05-2210	0.0010	62.8	4.64	0.395063	1.01	1	0.001	0.5	0.0009142
115	CER. AXIAL CAP. 1KPF	10%	100V	C28	M39014/05-2237	0.0010	62.8	4.64	0.537032	1.01	1	0.001	0.5	0.0012428
116	CER. AXIAL CAP. 10KPF	10%	50V	C29	M39014/05-2255	0.0010	62.8	4.64	0.660693	1.06	1	0.001	0.5	0.0016139
117	CER. AXIAL CAP. 10KPF	10%	50V	C30	M39014/05-2255	0.0010	62.8	4.64	0.660693	1.06	1	0.001	0.5	0.0016139
118	CER. AXIAL CAP. 10KPF	10%	50V	C31	M39014/05-2255	0.0010	62.8	4.64	0.660693	1.06	1	0.001	0.5	0.0016139
119	CER. AXIAL CAP. 10KPF	10%	50V	C33	M39014/05-2255	0.0010	62.8	4.64	0.660693	1.06	1	0.001	0.5	0.0016139
120	CER. AXIAL CAP. 4.7KPF	10%	100V	C34	M39014/05-2249	0.0010	62.8	4.64	0.617289	1.00	1	0.001	0.5	0.0014183
121	CER. AXIAL CAP. 1KPF	10%	100V	C35	M39014/05-2237	0.0010	62.8	4.64	0.537032	1.00	1	0.001	0.5	0.0012339
122	CER. AXIAL CAP. 10KPF	10%	50V	C36	M39014/05-2255	0.0010	62.8	4.64	0.660693	1.06	1	0.001	0.5	0.0016139
123	CER. AXIAL CAP. 100KPF	10%	50V	C38	M39014/05-2291	0.0010	62.8	4.64	0.812831	1.01	1	0.001	0.5	0.0018776
124	CER. AXIAL CAP. 100KPF	10%	50V	C39	M39014/05-2291	0.0010	62.8	4.64	0.812831	1.01	1	0.001	0.5	0.0018776
125	CER. AXIAL CAP. 100KPF	10%	50V	C40	M39014/05-2291	0.0010	62.8	4.64	0.812831	1.01	1	0.001	0.5	0.0018776
126	CER. AXIAL CAP. 100KPF	10%	50V	C41	M39014/05-2291	0.0010	62.8	4.64	0.812831	1.01	1	0.001	0.5	0.0018776
127	CER. AXIAL CAP. 100KPF	10%	50V	C42	M39014/05-2291	0.0010	62.8	4.64	0.812831	1.01	1	0.001	0.5	0.0018776
128	CER. AXIAL CAP. 100KPF	10%	50V	C43	M39014/05-2291	0.0010	62.8	4.64	0.812831	1.01	1	0.001	0.5	0.0018776
129	CER. AXIAL CAP. 100KPF	10%	50V	C44	M39014/05-2291	0.0010	62.8	4.64	0.812831	1.01	1	0.001	0.5	0.0018776
130	CER. AXIAL CAP. 100KPF	10%	50V	C45	M39014/05-2291	0.0010	62.8	4.64	0.812831	1.01	1	0.001	0.5	0.0018776
131	CER. AXIAL CAP. 100KPF	10%	50V	C46	M39014/05-2291	0.0010	62.8	4.64	0.812831	1.01	1	0.001	0.5	0.0018776
132	CER. AXIAL CAP. 100KPF	10%	50V	C47	M39014/05-2291	0.0010	62.8	4.64	0.812831	1.01	1	0.001	0.5	0.0018776
133	CER. AXIAL CAP. 100KPF	10%	50V	C48	M39014/05-2291	0.0010	62.8	4.64	0.812831	1.01	1	0.001	0.5	0.0018776
134	CER. AXIAL CAP. 100KPF	10%	50V	C49	M39014/05-2291	0.0010	62.8	4.64	0.812831	1.01	1	0.001	0.5	0.0018776
135	CER. AXIAL CAP. 100KPF	10%	50V	C50	M39014/05-2291	0.0010	62.8	4.64	0.812831	1.01	1	0.001	0.5	0.0018776
136	CER. AXIAL CAP. 100KPF	10%	50V	C52	M39014/05-2291	0.0010	62.8	4.64	0.812831	1.06	1	0.001	0.5	0.0019855
137	TANT. AXIAL CAP. 10UF	5%	50V	C51	M39003/01-5690	0.0004	62.8	1.93	1.698244	1.01	0.66	0.001	0.5	0.0004361
138	TANT. AXIAL CAP. 10UF	5%	50V	C53	M39003/01-5690	0.0004	62.8	1.93	1.698244	1.01	0.66	0.001	0.5	0.0004361
139	CER. AXIAL CAP. 100KPF	10%	50V	C54	M39014/05-2291	0.0010	62.8	4.64	0.812831	1.06	1	0.001	0.5	0.0019855
140	TANT. AXIAL CAP. 10UF	5%	50V	C55	M39003/01-5690	0.0004	62.8	1.93	1.698244	1.00	0.66	0.001	0.5	0.0004329
141	TANT. AXIAL CAP. 10UF	5%	50V	C56	M39003/01-5690	0.0004	62.8	1.93	1.698244	1.01	0.66	0.001	0.5	0.0004361
142	TANT. AXIAL CAP. 10UF	5%	50V	C57	M39003/01-5690	0.0004	62.8	1.93	1.698244	1.01	0.66	0.001	0.5	0.0004361

Item	Descricao	Ref.	Part Number	Lambda b	Temp	Pi T	Pi S	Pi Q	Pi E	Pi C	Taxa (FIT)	
143	1N6642	D1	JANS1N6642	0.001	62.81	3.21515	0.054	0.7	0.5	1	0.060766	
144	1N6642	D2	JANS1N6642	0.001	62.81	3.21515	0.054	0.7	0.5	1	0.060766	
145	1N6642	D3	JANS1N6642	0.001	62.81	3.21515	0.054	0.7	0.5	1	0.060766	
146	1N6642	D4	JANS1N6642	0.001	62.81	3.21515	0.054	0.7	0.5	1	0.060766	
147	1N6642	D5	JANS1N6642	0.001	62.81	3.21515	0.054	0.7	0.5	1	0.060766	
148	1N6642	D6	JANS1N6642	0.001	62.81	3.21515	0.054	0.7	0.5	1	0.060766	
149	1N6642	D7	JANS1N6642	0.001	62.81	3.21515	0.054	0.7	0.5	1	0.060766	
150	1N6642	D8	JANS1N6642	0.001	62.81	3.21515	0.054	0.7	0.5	1	0.060766	
151	1N6642	D9	JANS1N6642	0.001	62.81	3.21515	0.054	0.7	0.5	1	0.060766	
152	1N6642	D10	JANS1N6642	0.001	62.81	3.21515	0.054	0.7	0.5	1	0.060766	
Item	Descricao	Ref.	Part Number	Lambda b	Temp	Pi T	Pi S	Pi Q	Pi E	Pi A	Pi R	Taxa (FIT)
153	2N2222A	Q1	JANS2N2222A	0.0074	62.81	2.22272	0.09	0.7	0.5	0.7	3.92	1.42171266
Item	Descricao	Ref.	Part Number	Lambda b	Temp	-	-	Pi Q	Pi E	-	Taxa (FIT)	
154	CRYSTAL	XTAL1	530100297B	0.021	-	-	-	1	0.5	-	10.5	

Item	Descricao	Ref.	Part Number	Lambda b	Temp	-	-	Pi Q	Pi E	-	Taxa (FIT)
155	CONECTOR	CNT1		-	-	-	-	-	-	-	18.34003

ltem	Componente	Ref.	Part Number	C1	C2	piS	piQ	piE	piL	Tj (oC)	Ea(eV)	piT	Lambda P (FIT)
1	80C32	U1	5962-0051801VQC	0.1400	0.0150	1	0.25	0.5	1.0	59.7	0.35	0.4140636	16.3672277
2	54HC373	U2	9203-059-02B	0.0100	0.0070	1	0.25	0.5	1.0	51.9	0.35	0.3094560	1.6486399
3	54HC373	U15	9203-059-02B	0.0100	0.0070	1	0.25	0.5	1.0	52.4	0.35	0.3150940	1.6627350
4	AD574A	U16	5962R8512701VXA	0.0200	0.0102	1	0.25	0.5	1.0	84.9	0.65	6.9246120	35.8980598
5	HS1840	U17	5962F9563002VYC	0.0400	0.0129	1	0.25	0.5	1.0	51.8	0.65	0.8062240	9.6747404
6	LM108	U18	5962R9863702VGA	0.0100	0.0020	1	0.25	0.5	1.0	55.1	0.65	1.0198175	2.7995438
7	DCH0515D	U19	DCH0515D/ES	0.0200	0.0026	1	0.25	0.5	1.0	64.5	0.65	1.9359880	10.0049398
8	UT28F256QLT	U3	5962F9689110VXC	0.0068	0.0130	1	0.25	0.5	1.0	54.5	0.60	0.8204618	3.0197850
9	54HC4050	U4	9401-038-02B	0.0100	0.0129	1	0.25	0.5	1.0	54.5	0.65	0.9777546	4.0568865
10	CD40109B	U5	5962R9664501VXC	0.0100	0.0013	1	0.25	0.5	1.0	54.5	0.65	0.9777546	2.6068865
11	54HC138	U6	9408-046-02B	0.0100	0.0047	1	0.25	0.5	1.0	54.5	0.35	0.3413506	1.4408766
12	CD40109B	U8	5962R9664501VXC	0.0100	0.0013	1	0.25	0.5	1.0	54.5	0.65	0.9777546	2.6068865
13	54HC4060	U9	9204-076-02B	0.0100	0.0013	1	0.25	0.5	1.0	54.5	0.65	0.9777546	2.6068865
14	54HC10	U10	9201-107-02B	0.0100	0.0037	1	0.25	0.5	1.0	54.5	0.35	0.3413506	1.3158766
15	54HC32	U11	9201-111-02B	0.0100	0.0037	1	0.25	0.5	1.0	54.5	0.35	0.3413506	1.3158766
16	54H00	U12	9201-105-02B	0.0100	0.0037	1	0.25	0.5	1.0	54.5	0.35	0.3413506	1.3158766
17	54HC4050	U13	9401-038-02B	0.0100	0.0129	1	0.25	0.5	1.0	54.5	0.65	0.9777546	4.0568865
18	CD40109B	U14	5962R9664501VXC	0.0100	0.0129	1	0.25	0.5	1.0	54.5	0.65	0.9777546	4.0568865

c) Parâmetros para os 105 componentes da PCA LTU PSYS - Nível 1.

Item	Componente	%	Ref.	Part Number	Lambda b	Tjc	Pi T	Pi S	Pi P	Pi Q	Pi E	Falhas (FIT)
19	METAL FILM RES. 3R1 1/8W	1%	RAP1	RLR07C3R10FS	0.0037	63.1	1.41059	0.83	0.274	0.03	0.5	0.017804199
20	METAL FILM RES. 5R1 1/4W	2%	R46	RLR07C5R10GS	0.0037	63.3	1.44126	1.74	0.538	0.03	0.5	0.074880173
21	METAL FILM RES. 5R1 1/2W	2%	R49	RLR20C5R1GS	0.0037	57.9	1.38185	0.77	0.276	0.03	0.5	0.016298727
22	METAL FILM RES. 12R 1/8W	2%	R48	RLR05C12R0GS	0.0037	54.5	1.34682	0.72	0.073	0.03	0.5	0.003928782
23	METAL FILM RES. 51R1 1/10W	0.10%	R38	RNC55J51R1BS	0.0037	54.5	1.34682	0.71	0.012	0.03	0.5	0.000636857
24	METAL FILM RES. 30R 1/8W	2%	R2	RLR05C30R0GS	0.0037	54.5	1.34682	0.74	0.12	0.03	0.5	0.006637668
25	METAL FILM RES. 100R 1/8W	2%	R13	RLR05C1000GS	0.0037	54.5	1.34682	0.71	0.032	0.03	0.5	0.001698286
26	METAL FILM RES. 100R 1/8W	2%	R14	RLR05C1000GS	0.0037	54.5	1.34682	0.71	0.056	0.03	0.5	0.002972001
27	METAL FILM RES. 100R 1/10W	0.10%	R40	RNC55J1000BS	0.0037	54.5	1.34682	0.71	0.018	0.03	0.5	0.000955286
28	METAL FILM RES. 200R 1/8W	2%	R42	RLR05C2000GS	0.0037	54.5	1.34682	0.71	0.018	0.03	0.5	0.000955286
29	METAL FILM RES. 1K 1/8W	2%	R41	RLR05C1001GS	0.0037	54.5	1.34682	0.93	0.256	0.03	0.5	0.017796125
30	METAL FILM RES. 4K7 1/8W	2%	R16	RLR05C4701GS	0.0037	54.5	1.34682	0.93	0.257	0.03	0.5	0.017865641

ltem	Componente	%	Ref.	Part Number	Lambda b	Tjc	Pi T	Pi S	Pi P	Pi Q	Pi E	Falhas (FIT)
31	METAL FILM RES. 5K1 1/8W	2%	R24	RLR05C5101GS	0.0037	54.5	1.34682	0.71	0.046	0.03	0.5	0.002441286
32	METAL FILM RES. 7K5 1/8W	2%	R17	RLR05C7501GS	0.0037	54.5	1.34682	0.71	0.053	0.03	0.5	0.002812786
33	METAL FILM RES. 10K 1/8W	2%	R3	RLR05C1002GS	0.0037	54.5	1.34682	0.81	0.191	0.03	0.5	0.011564342
34	METAL FILM RES. 10K 1/8W	2%	R4	RLR05C1002GS	0.0037	54.5	1.34682	0.73	0.104	0.03	0.5	0.005674907
35	METAL FILM RES. 10K 1/8W	2%	R5	RLR05C1002GS	0.0037	54.5	1.34682	0.81	0.191	0.03	0.5	0.011564342
36	METAL FILM RES. 10K 1/8W	2%	R6	RLR05C1002GS	0.0037	54.5	1.34682	0.81	0.191	0.03	0.5	0.011564342
37	METAL FILM RES. 10K 1/8W	2%	R7	RLR05C1002GS	0.0037	54.5	1.34682	0.81	0.191	0.03	0.5	0.011564342
38	METAL FILM RES. 10K 1/8W	2%	R15	RLR05C1002GS	0.0037	54.5	1.34682	0.8	0.19	0.03	0.5	0.011361774
39	METAL FILM RES. 10K 1/8W	2%	R20	RLR05C1002GS	0.0037	54.5	1.34682	0.73	0.104	0.03	0.5	0.005674907
40	METAL FILM RES. 10K 1/8W	2%	R26	RLR05C1002GS	0.0037	54.5	1.34682	0.71	0.022	0.03	0.5	0.001167572
41	METAL FILM RES. 10K 1/8W	2%	R28	RLR05C1002GS	0.0037	54.5	1.34682	0.81	0.191	0.03	0.5	0.011564342
42	METAL FILM RES. 10K 1/8W	2%	R29	RLR05C1002GS	0.0037	54.5	1.34682	0.81	0.191	0.03	0.5	0.011564342
43	METAL FILM RES. 10K 1/8W	2%	R30	RLR05C1002GS	0.0037	54.5	1.34682	0.71	0.018	0.03	0.5	0.000955286
44	METAL FILM RES. 15K 1/8W	2%	R21	RLR05C1502GS	0.0037	54.5	1.34682	0.72	0.089	0.03	0.5	0.004789885
45	METAL FILM RES. 20K 1/8W	2%	R19	RLR05C2002GS	0.0037	54.5	1.34682	0.72	0.079	0.03	0.5	0.004251695
46	METAL FILM RES. 51K 1/8W	2%	R8	RLR05C5102GS	0.0037	54.5	1.34682	0.73	0.101	0.03	0.5	0.005511208
47	METAL FILM RES. 51K 1/8W	2%	R9	RLR05C5102GS	0.0037	54.5	1.34682	0.73	0.101	0.03	0.5	0.005511208
48	METAL FILM RES. 51K 1/8W	2%	R10	RLR05C5102GS	0.0037	54.5	1.34682	0.73	0.101	0.03	0.5	0.005511208
49	METAL FILM RES. 51K 1/8W	2%	R11	RLR05C5102GS	0.0037	54.5	1.34682	0.73	0.101	0.03	0.5	0.005511208
50	METAL FILM RES. 51K 1/8W	2%	R25	RLR05C5102GS	0.0037	54.5	1.34682	0.71	0.041	0.03	0.5	0.002175929
51	METAL FILM RES. 51K 1/8W	2%	R33	RLR05C5102GS	0.0037	54.5	1.34682	0.73	0.101	0.03	0.5	0.005511208
52	METAL FILM RES. 51K 1/8W	2%	R34	RLR05C5102GS	0.0037	54.5	1.34682	0.73	0.101	0.03	0.5	0.005511208
53	METAL FILM RES. 51K1 1/10W	0.10%	R31	RNC55J5102BS	0.0037	54.5	1.34682	0.78	0.158	0.03	0.5	0.009212006
54	METAL FILM RES. 51K1 1/10W	0.10%	R32	RNC55J5102BS	0.0037	54.5	1.34682	0.78	0.158	0.03	0.5	0.009212006
55	METAL FILM RES. 56K 1/8W	2%	R18	RLR05C5602GS	0.0037	54.5	1.34682	0.71	0.053	0.03	0.5	0.002812786
56	METAL FILM RES. 100K 1/8W	2%	R23	RLR05C1003GS	0.0037	54.5	1.34682	0.72	0.078	0.03	0.5	0.004197876
57	METAL FILM RES. 100K 1/10W	0.10%	R39	RNC55J1003BS	0.0037	54.5	1.34682	0.71	0.018	0.03	0.5	0.000955286
58	METAL FILM RES. 200K 1/8W	2%	R12	RLR05C2003GS	0.0037	54.5	1.34682	0.71	0.032	0.03	0.5	0.001698286
59	METAL FILM RES. 200K 1/8W	2%	R22	RLR05C2003GS	0.0037	54.5	1.34682	0.71	0.059	0.03	0.5	0.003131215
60	METAL FILM RES. 200K 1/8W	2%	R27	RLR05C2003GS	0.0037	54.5	1.34682	0.71	0.059	0.03	0.5	0.003131215
61	METAL FILM RES. 1M 1/8W	2%	R43	RLR05C1004GR	0.0037	54.5	1.34682	0.71	0.024	0.03	0.5	0.001273715

ltem	Descricao	%	Tensao	Ref.	Part Number	Lambda b	Temp	Pi T	Pi Cv	Pi V	Pi SR	Pi Q	Pi E	Falhas (FIT)
62	CER. AXIAL CAP. 10KPF	10%	50V	C1	M39014/05-2255	0.00099	54.5	3.41	0.660693	1.06	1	0.001	0.5	0.0011878
63	CER. AXIAL CAP. 10KPF	10%	50V	C4	M39014/05-2255	0.00099	54.5	3.41	0.660693	1.01	1	0.001	0.5	0.0011232
64	CER. AXIAL CAP. 10KPF	10%	50V	C6	M39014/05-2255	0.00099	54.5	3.41	0.660693	1.06	1	0.001	0.5	0.0011878
65	CER. AXIAL CAP. 10KPF	10%	50V	C7	M39014/05-2255	0.00099	54.5	3.41	0.660693	1.06	1	0.001	0.5	0.0011878
66	CER. AXIAL CAP. 10KPF	10%	50V	C16	M39014/05-2255	0.00099	54.5	3.41	0.660693	1.01	1	0.001	0.5	0.0011253
67	CER. AXIAL CAP. 10KPF	10%	50V	C17	M39014/05-2255	0.00099	54.5	3.41	0.660693	1.06	1	0.001	0.5	0.0011878
68	CER. AXIAL CAP. 10KPF	10%	50V	C18	M39014/05-2255	0.00099	54.5	3.41	0.660693	1.06	1	0.001	0.5	0.0011878
69	CER. AXIAL CAP. 10KPF	10%	50V	C19	M39014/05-2255	0.00099	54.5	3.41	0.660693	1.06	1	0.001	0.5	0.0011878
70	CER. AXIAL CAP. 10KPF	10%	50V	C23	M39014/05-2255	0.00099	54.5	3.41	0.660693	1.06	1	0.001	0.5	0.0011878
71	CER. AXIAL CAP. 10KPF	10%	50V	C26	M39014/05-2255	0.00099	54.5	3.41	0.660693	1.06	1	0.001	0.5	0.0011878
72	CER. AXIAL CAP. 10KPF	10%	50V	C27	M39014/05-2255	0.00099	54.5	3.41	0.660693	1.06	1	0.001	0.5	0.0011878
73	CER. AXIAL CAP. 10KPF	10%	50V	C28	M39014/05-2255	0.00099	54.5	3.41	0.660693	1.06	1	0.001	0.5	0.0011878
74	CER. AXIAL CAP. 10KPF	10%	50V	C29	M39014/05-2255	0.00099	54.5	3.41	0.660693	1.06	1	0.001	0.5	0.0011878
75	CER. AXIAL CAP. 10KPF	10%	50V	C30	M39014/05-2255	0.00099	54.5	3.41	0.660693	1.06	1	0.001	0.5	0.0011878
76	CER. AXIAL CAP. 10KPF	10%	50V	C31	M39014/05-2255	0.00099	54.5	3.41	0.660693	1.06	1	0.001	0.5	0.0011878
77	CER. AXIAL CAP. 10KPF	10%	50V	C32	M39014/05-2255	0.00099	54.5	3.41	0.660693	1.06	1	0.001	0.5	0.0011878
78	CER. AXIAL CAP. 10KPF	10%	50V	C33	M39014/05-2255	0.00099	54.5	3.41	0.660693	1.06	1	0.001	0.5	0.0011878
79	CER. AXIAL CAP. 10KPF	10%	50V	C34	M39014/05-2255	0.00099	54.5	3.41	0.660693	1.06	1	0.001	0.5	0.0011878
80	CER. AXIAL CAP. 1KPF	10%	100V	C8	M39014/05-2237	0.00099	54.5	3.41	0.537032	1.00	1	0.001	0.5	0.0009081
81	CER. AXIAL CAP. 1KPF	10%	100V	C12	M39014/05-2237	0.00099	54.5	3.41	0.537032	1.01	1	0.001	0.5	0.0009147
82	CER. AXIAL CAP. 27PF	10%	100V	C2	M39014/05-2209	0.00099	54.5	3.41	0.387992	1.00	1	0.001	0.5	0.0006561
83	CER. AXIAL CAP. 27PF	10%	100V	C3	M39014/05-2209	0.00099	54.5	3.41	0.387992	1.00	1	0.001	0.5	0.0006561
84	CER. AXIAL CAP. 33PF	10%	100V	C22	M39014/05-2210	0.00099	54.5	3.41	0.395063	1.01	1	0.001	0.5	0.0006729
85	CER. AXIAL CAP. 4.7KPF	10%	100V	C9	M39014/05-2249	0.00099	54.5	3.41	0.617289	1.00	1	0.001	0.5	0.0010438
86	CER. AXIAL CAP. 510PF	10%	100V	C21	M39014/05-2233	0.00099	54.5	3.41	0.395063	1.00	1	0.001	0.5	0.0006680
87	TANT. AXIAL CAP. 22UF	5%	50V	C11	M39003/01-5694	0.0004	54.5	1.69	2.035904	1.00	0.66	0.001	0.5	0.0004569
88	TANT. AXIAL CAP. 22UF	5%	50V	C13	M39003/01-5694	0.0004	54.5	1.69	2.035904	1.00	0.66	0.001	0.5	0.0004569
89	TANT. AXIAL CAP. 22UF	5%	50V	C37	M39003/01-5694	0.0004	54.5	1.69	2.035904	1.06	0.66	0.001	0.5	0.0004839
90	TANT. AXIAL CAP. 22UF	5%	50V	C39	M39003/01-5694	0.0004	54.5	1.69	2.035904	1.00	0.66	0.001	0.5	0.0004569
91	TANT. AXIAL CAP. 22UF	5%	50V	C41	M39003/01-5694	0.0004	54.5	1.69	2.035904	1.06	0.66	0.001	0.5	0.0004839
92	TANT. AXIAL CAP. 47UF	5%	35V	C42	M39003/01-5649	0.0004	54.5	1.69	2.035904	1.06	0.66	0.001	0.5	0.0004839
93	TANT. AXIAL CAP. 47UF	5%	35V	C43	M39003/01-5649	0.0004	54.5	1.69	2.035904	1.06	0.66	0.001	0.5	0.0004839
94	CER. AXIAL CAP. 100KPF	10%	50V	C14	M39014/05-2291	0.00099	54.5	3.41	0.812831	1.06	1	0.001	0.5	0.0014613
95	CER. AXIAL CAP. 100KPF	10%	50V	C15	M39014/05-2291	0.00099	54.5	3.41	0.812831	1.01	1	0.001	0.5	0.0013819
96	CER. AXIAL CAP. 100KPF	10%	50V	C20	M39014/05-2291	0.00099	54.5	3.41	0.812831	1.01	1	0.001	0.5	0.0013819
97	CER. AXIAL CAP. 100KPF	10%	50V	C25	M39014/05-2291	0.00099	54.5	3.41	0.812831	1.01	1	0.001	0.5	0.0013819
98	CER. AXIAL CAP. 100KPF	10%	50V	C38	M39014/05-2291	0.00099	54.5	3.41	0.812831	1.01	1	0.001	0.5	0.0013819

ltem	Descricao	Ref.	Part Number	Lambda b	Temp	Pi T	Pi S	Pi Q	Pi E	Pi C	Taxa (FIT)
99	1N6642	D1	JANS1N6642	0.001	54.5	2.54546993	0.054	0.7	0.5	1	0.048109
100	1N6642	D2	JANS1N6642	0.001	54.5	2.54546993	0.054	0.7	0.5	1	0.048109
101	1N6642	D3	JANS1N6642	0.001	54.5	2.54546993	0.054	0.7	0.5	1	0.048109
102	1N6642	D4	JANS1N6642	0.001	54.5	2.54546993	0.054	0.7	0.5	1	0.048109

ltem	Descricao	Ref.	Part Number	Lambda b	Temp	Pi T	Pi S	Pi Q	Pi E	Pi A	Pi R	Taxa (FIT)
103	2N2222A	Q1	JANS2N2222A	0.0074	54.5	1.89458137	0.09	0.7	0.5	0.7	3.92	1.211824

Item	Descricao	Ref.	Part Number	Lambda b	Pi Q	Pi E	Taxa (FIT)
104	CRYSTAL	XTAL1	530100297B	0.021	1	0.5	10.5000

Item	Descricao	Ref.	Part Number	Lambda b	Pi Q	Pi E	Taxa (FIT)
105	Conector						18.340025
APENDICE B – LISTA DE CONEXÕES ENTRE OS COMPONENTES (NETLIST)

Fonte/ Destino	U1	U3	U9	U10	U13	U14	U19	U22	U23	U25	U26	R37	R40	R56	RAP1	R57	R58	CNT1
U1	-	6	1															1
U3		-								1								
U9			-		2		1		1	1								
U10	1		1	-									1					
U13			2	1	-													
U14				4	1	-												1
U19				1		1	-	1			1							
U22							2	-				1						
U23					1				-		1						1	1
U25				1		1	1			-								
U26					1						-			1		1		
R37							1					•						
R40								1					-					
R56														-	1			1
RAP1															-			1
R57													1			-		
R58																	-	1
CNT1																		-

Tabela B.1 - Lista de conexões entre os componentes (Netlist) da PCA BAPTA considerada nas Instâncias 1 e 2 (50 conexões).

Tabela B.2 - Lista de conexões en	tre os componentes (N	Netlist) da PCA BAPT	A considerada
nas Instâncias 2 e 3	(107 conexões).		

Fonte/ Destino	U1	U3	U9	U10	U13	U14	U19	U22	U23	U25	U26	U2	U11	U12	U15	U16	CNT1
U1	-	6										9			8		
U3		-															1
U9			-														
U10				-													
U13					-												
U14						-											
U19							-	16									
U22								-									2
U23									-								
U25										-							1
U26											-						
U2		16															1
U11	8												•	8			1
U12			8											-			
U15															•	8	1
U16							8									-	1
CNT1				2					2								-

Fonte/ Destino	U1	U2	U15	U16	U17	U18	U19	R46	RAP1	R49	CNT1
U1	-	8									1
U2		-		12							1
U15		4	-								1
U16				-							3
U17			4		-	1					18
U18						-					2
U19							-			1	3
R46								-	1		1
RAP1		1	1		1				-		
R49										-	1
CNT1											-

Tabela B.3 - Lista de conexões entre os componentes (Netlist) da PCA PSYS considerada nas Instâncias 1 e 2 (65 conexões).

APENDICE C – CARACTERÍSTICAS TÉRMICAS DOS COMPONENTES QUE PARTICIPARAM DA METODOLOGIA

Encapsulamento	DIP-28	DIP-40	TO-39	DCH05	T0-99	FPC-14	FPC-20	FPC-24	FPC-28	RLR05	RLR07	RLR20
Comprimento dos pinos (mm)	37,85	50,29	8,51	24,89	8,51	9,95	10,16	15,49	18,8	3,81	6,35	9,53
Largura dos pinos(mm)	15,49	13,46	8,51	20,45	-	6,91	10,16	11,00	13,21	1,68	2,29	3,51
Altura dos pinos(mm)	2,16	5,08	4,20	8,89	6,60	2,33	2,23	2,48	2,92	1,68	2,29	3,51
Comprimento efetivo dos pinos (mm)	2,50	2,00	2,00	2,20	3,00	3,00	3,00	3,00	2,00	5,00	5,00	5,00
Espessura dos pinos (mm)	0,20	0,25	0,42	0,46	0,5	0,15	0,43	0,10	0,23	0,41	0,64	0,81
Condutividade térmica dos pinos (W/m-℃)	261,00	261,00	172,00	18,30	172,00	65,75	17,00	100,85	54,43	172,00	172,00	172,00
Área de contato com a PCI	586,30	676,90	72,42	509,00	0,00	68,75	103,23	170,39	248,35	6,40	14,54	33,45

Tabela C.1 – Características térmicas dos components que participaram da metodologia

PUBLICAÇÕES TÉCNICO-CIENTÍFICAS EDITADAS PELO INPE

Teses e Dissertações (TDI)	Manuais Técnicos (MAN)
Teses e Dissertações apresentadas nos Cursos de Pós-Graduação do INPE.	São publicações de caráter técnico que incluem normas, procedimentos, instruções e orientações.
Notas Técnico-Científicas (NTC)	Relatórios de Pesquisa (RPQ)
Incluem resultados preliminares de pesquisa, descrição de equipamentos, descrição e ou documentação de programa de computador, descrição de sistemas e experimentos, apresenta- ção de testes, dados, atlas, e docu- mentação de projetos de engenharia.	Reportam resultados ou progressos de pesquisas tanto de natureza técnica quanto científica, cujo nível seja compatível com o de uma publicação em periódico nacional ou internacional.
Propostas e Relatórios de Projetos (PRP)	Publicações Didáticas (PUD)
São propostas de projetos técnico- científicos e relatórios de acompanha- mento de projetos, atividades e convê- nios.	Incluem apostilas, notas de aula e manuais didáticos.
Publicações Seriadas	Programas de Computador (PDC)
São os seriados técnico-científicos: boletins, periódicos, anuários e anais de eventos (simpósios e congressos). Constam destas publicações o Internacional Standard Serial Number (ISSN), que é um código único e definitivo para identificação de títulos de seriados.	São a seqüência de instruções ou códigos, expressos em uma linguagem de programação compilada ou inter- pretada, a ser executada por um computador para alcançar um determi- nado objetivo. São aceitos tanto programas fonte quanto executáveis.
Pré-publicações (PRE)	

Todos os artigos publicados em periódicos, anais e como capítulos de livros.