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Abstract. This paper investigates image and RGB video compression by a 
supervised morphological neural network. This network was originally 
designed to compress grayscale image and was then extended to RGB video. It 
supports two kinds of thresholds: a pixel-component threshold and pixel-error 
counting threshold. The activation function is based on an adaptive 
morphological neuron, which produces suitable compression rates even when 
working with three color channels simultaneously. Both intra-frame and inter-
frame compression approaches are implemented. The PSNR level indicates that 
the compressed video is compliant with the desired quality levels. Our results 
are compared to those obtained with commonly used image and video 
compression methods. Network application results are presented for grayscale 
images and RGB video with a 352 × 288 pixel size. 

Keywords: Supervised Morphological Neural Network, RGB Video 
Compression, and Image Compression. 

1 Introduction 

The loss of data is common in a variety of image and video compression techniques, 
and such losses generally occur in parts of the information (redundancy data) that are 
not noticed by human eyes. Numerous compression algorithms utilize common 
techniques such as “color space sampling” and “redundancy reduction” [1]. The 
color space sampling technique is used when it is necessary to reduce the amount of 
data needed for the representation (coding) of an image. In the redundancy reduction 
technique, compression can be obtained by eliminating the redundancies that appear 
in a specific frame (intra-frame) or in a sequence of frames (inter-frame) in a video 
stream. Several studies have investigated the use of artificial neural networks (ANN) 
in image and video compression [1]. Some researchers [2] investigated image 
compression and reconstruction using a radial basis function (RBF) network, while 
others [3] proposed a technique called a “point process” that used a combination of 
motion estimation, compression, and temporal frame sub-sampling with a random 
neural network (RNN). In [4], the authors discussed various ANN architectures for 
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image compression and presented the results for a back-propagation network (BPN), 
hierarchical back-propagation network (HBPN), and adaptive back-propagation 
network (ABPN). In [5], they used a self-organizing map (SOM) network to reduce 
the number of pixels in each frame of a video sequence. After this modification, each 
frame was stored using a Hopfield neural network as a form of video codification. In 
[6], they used the growing neural gas (GNG) learning method, another approach 
based on a SOM network, in an incremental training algorithm. In [7], the authors 
presented the details of an approach in which a neural network is used to determine 
the best ratio for discrete cosine transform (DCT) compression. Although there have 
been many works related to image and video compression, the use of supervised 
morphological neural networks (SMNNs) in this context has not been extensively 
investigated thus far. Therefore, in this paper, we investigate the extension of an 
SMNN, which was originally designed to compress grayscale images, by applying it 
to the compression of RGB video.  

We organize the remaining sections of this paper as follows. We first provide a 
brief review of the morphological operators involved in the design of the adaptive 
morphological neuron. Second, we introduce the SMNN for grayscale image 
compression and then extend its application to RGB video compression. Third, we 
present the image and video compression results. 

2 Brief Review of Morphological Operators 

The morphological operators presented in this section were defined in [8] and briefly 
in [9], while the researchers in [10] proposed a morphological approach for template 
matching.  

Definition 1. Let E be a non-void set in  and  be an integer number between 0 and 
n.   , denoted by     , are operators defined as dilation, erosion, anti-
dilation, and anti-erosion, respectively. Formal definitions for these operators are 
given in [8] and [10].  

Definition 2. Let a window  be a non-void subset of . An individual element of  is denoted by , according to:  | .  (1)

Definition 3. Let  be a window and  and  be two non-void subsets of , 
such that , and let  be an integer number between 0 and . The symbol 

 refers to Minkowski addition. We denote by ε  and δ  the operators from  to 
 defined in [10]. 

Definition 4. Let   and  and  (  be two integer constants. We 
define the following functions from  to  : 0, , , (2)0, , , (3)
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where . The values of   and  are calculated according to de following 
equation.              2 2   (4)

where the length of  is the interval , , centered at .  

Definition 5. Let ε  and δ  be the operators from  to given by definition 1, and 
let  and be the functions defined by (2) and (3), respectively.   is an operator 
from  to  defined by: 

 ε δ , (5)

where  is a window; # ; 1, … , .  

Definition 6. The pattern matching operator from  to  is: 

,…,  (6)

The operator  represents the intersections between erosions and anti-dilations with 
the tolerances introduced by equations (2) and (3), which are controlled by the value 
of . Therefore, such operations start to behave as morphological operators with gray 
level tolerance. Observe that the operations in equation (6) result in adaptive pattern 
matching.  

Definition 7. Let    be a threshold. The operator  from  to  , which 
localizes a concentration of gray levels above or equal to , according to [11] is 
defined as:  1,     ,0,        (7)

This threshold operator is a morphological filter, which is useful for adaptive pattern 
detection, and it is a key component in the activation function of the morphological 
neuron used in this work, as discussed later.  The equations and definitions presented 
in this section are first applicable to gray scale images. Thus, it is important to note 
that because the color components in RGB schema can be represented in a range of 
values between 0 to 255, all of the definitions and proofs available in [8-10] and [12] 
that were developed for gray scale images are suitable for processing color images, 
since we consider only one component of the color at a time. This strategy is adopted 
in this work, and we refer to the values between 0 to  of the color component, as the 
“color variation of the component” (CVC), where 0 255. 

3 SMNN for Image Compression 

The activation potential and activation function of SMNN for image compression are 
based on equations (6) and (7), and they are defined according to: 
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, (8)

and . (9)

During the supervised training, the weights first decay in order to accelerate the 
weight adjustment process, according to equation (10): 1 . (10)

Where 0 1, refers to the weight of neuron k in iteration n, and   is 
defined according to 

1 . (11)

Then the weights are adjusted according to , (12)

where  is the desired value, and β Is an array, defined by . (13)

Note that  is the learning constant and  is an array defined by the following 
equations , (14)

where  is an array with dimensions . 

, (15)

where  is the complement of ,  , (16)

where  and  are the dimensions of , and finally we have 

. (17)

The activation function for the morphological neuron in the auxiliary layer is: , 10 , (18)

Note that equation (18) is a morphological dilation. Figure 1 presents the 
architecture for this SMNN; observe that the network is composed of an input layer, 
an output layer, and a hidden layer with its auxiliary layer. The input layer receives 
the patterns to be learned; in this case, “patterns” refers to the data of the image to 
be compressed.  
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Fig. 1. Architecture of a SMNN 

In this architecture, the  patterns presented to the input layer must belong to the 
 domain; the   value refers to the desired value, which is mandatory for error 

correction in the learning phase. The network’s output is limited to the  domain. 
 refers to a sub-image of dimension  with a positive grayscale level between [0, 

m].   refers to the output of a morphological neuron of the second layer.  
According to definition 4 and equations (2–4) SMNN allows the definition of a 

pixel-component threshold, in fact, the tolerance interval . This interval defines the 
tolerance of the SMNN to deal with gray level variations between the neurons’ 
weights and a pattern under processing by the network. In addition, SMNN also 
allows the definition of a pixel-error counting threshold. This threshold is responsible 
for restricting the neuron’s activation. In the following sections, we extend a SMNN 
in order to make it capable of compressing images and RGB video. 

3.1 Grayscale Image Compression 

The image to be compressed is fragmented into a set of windows. Each element of 
this set is processed by all of the morphological neurons (MNs). The Winner neuron 
produces an output with value 1 (high), while all of the others produce outputs with 
value 0 (low). Let   be an image of dimensions  and positive 
grayscale levels within [0, m], and  be a sub-image of , such that the union of all 
of the sub-images reconstructs the original image . The reconstruction of image  is 
defined by: 
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 (19)

One extension of SMNN is required for image compression: the auxiliary neuron is 
loaded with the sequential number of the corresponding MN from the second layer. 
The output of the MN is received by its corresponding outstar neuron, which when 
excited with a high input, outputs the value loaded during the training phase. Thus, 
the network effectively indicates the winner MN that has learned or recognized the 
input pattern (which in this particular application refers to a  window). This 
output must be preserved, mapping which  window a MN can reproduce. This is 
the key for decoding the compressed image; we use a mapping between a window 
and the neuron that has “learned” this window. In this way, the nth neuron’s 
weights are used in order to reproduce the windows associated with it. This 
mapping is defined by , , … , , | , , (20)

where  is the set of  sub-images, regarding image . The value of  means the 
kth MN and ,   refers to the ith mapping between a MN and a sub-image 
(window). Figure 2 shows how an image or a component of the frame is processed 
by a SMNN. 

 

Fig. 2. Illustration of how image or frame is compressed by the SMNN 

3.2 RGB Video Compression 

For the compression of RGB video, each component of the stream is processed in an 
individual instance of SMNN. Consequently, at the end of the compression, we obtain 
three instances of SMNN. This process is depicted in Figure 3. 
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Fig. 3. RGB video compression by SMNN 

The use of SMNN for video stream compression does not require any adaptation of 
its extended proposition for grayscale image compression. Each frame is split into a 
set of  sub-images. Then, for each set, we create a  map, according to equation 
(20). Finally, an entire component stream is encoded according to: 

, (21)

where  is the length of the video stream measured in frames. In the next section we 
present the SMNN results related to the compression of grayscale images and RGB 
video. 

4 Computer Simulations and Discussion  

Table 1 presents the results for the compression of Figure 2(G), which is a grayscale 
image with 320X240 pixels and 8 bits per pixel (bpp), totaling 76.800 bytes without 
compression. 

Table 1. Results obtained by applying 3 image compression methods to figure 2(G) 

Image Format Image Size 
 

Size (bytes) Compression 
ratio  

Fidelity Criteria 
eRMS 

A PNG 320x240 77.279 (0,99) 2.6 
B PNG 320x240 54.858 1.39 8.4 
C NMC 320x240 72.040 1.07 0.3 
D NMC 320x240 30.146 2.55 4.9 
E JPG 320x240 41.684 1.84 3.6 
F JPG 320x240 2.468 31.11 27.5 
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Measurements of   and  are always calculated in relation to image 2(G). In 
Table 1, JPG refers to the Joint Photographic Experts Group format, PNG refers to the 
portable network graphics and NMC refers to the neural morphological compression 
method, produced by SMNN. Each method was used to produced images with the 
highest and lowest compression levels possible. To evaluate the fidelity criteria, we 
use the root mean square error (eRMS) for an objective evaluation of the images in 
Figure 2(A-G).  

 

Fig. 4. Dog Lisbela in different images formats obtained with 3 compression methods 

The compression ratio estimation listed in Table 1 were obtained in accordance 
with equation (22), in which  refers to original image size in bytes,  refers to 
compressed image size in bytes, and eRMS are defined according to equation (23). 

 (22)

 

 1   , ,  (23)

Figure 5(A) depicts the results for compression with a window size = 3 and the 
following variations in the SMNN’s parameters: T from 0.7 to 1.0, and F from 5 to 
10. Note that in charts (A) and (B), the value of F was normalized. In chart (B), we 
can see the results for a window size = 3 and the same variation in the SMNN’s 
parameters as seen in chart (A). 
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Fig. 5. Results for compression of grayscale image with variations of SMNN’s parameters 

For RGB video compression we used the “foreman” stream [13]. This test video 
was obtained by converting a CIF video to the RGB color space, sampling with 10 
frames. The results are presented for 8×8 and 16×16 window sizes. In Figure 5 we can 
see samples of frame ten compressed with variations of SMNN’s parameters. 

 

  
A B C 

  
D E F 

Fig. 6. Frame ten compressed with various parameters. 

Table 2. Samples of results obtained by applying SMNN to 10th frame of Foreman video 

Frame Window Size 
 

F t Compression 
ratio  

Objective Quality 
 (db) 

A 8×8 10 0.90 1.296 45.47 
B 8×8 20 0.90 2.357 34.33 
C 8×8 30 0.90 3.698 30.25 
D 16×16 10 0.90 1.162 40.31 
E 16×16 20 0.90 1.690 34.20 
F 16×16 30 0.90 2.227 30.59 
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The foreman video was successfully compressed by a SMNN, as we can see in 
table 2, for a windows size 8×8, with a low tolerance to variations in the pixel values 
(F = 10) and a pixel-error threshold setting of t=0.90, resulting in a good compression 
ratio (3.69) and an acceptable PSNR level. Note that these results refer to the 10th 
frame only. To evaluate the fidelity criteria for the compressed images and video we 
utilize the peak signal-to-noise ratio (PSNR) for an objective evaluation according to 
equation:  10. log  (24)

We extended the investigation of RGB video compression by compressing the first 
100 frames of the Foreman video, and compared the results of SMNN with results 
from other well-known compression techniques. Table 3 shows these results. Figure 6 
shows the PSNR and CR evolution, frame-by-frame, throughout the compression of 
the first 100 frames of the Foreman video, while Figure 7 shows the growth in the 
number of neurons during this compression.  

In Table 3 the results for HEO-II refers to [14], KAMINSKY and JM9.5 refer to 
[15], and FS and ANEA refer to [16]. NMC1 refers to the results for SMNN with 
t=0.6, F=5.0, and a window with 8×8 pixels size, and NMC2 refers to results for 
SMNN with t=0.8, F=20.0, and a window with 4×4 pixels size. 

Table 3. Numerical results obtained by applying SMNN to first 100 frames of Foreman video. 

Technique 
 

Requires complex 
pre-processing? 

PSNR Bit rate 
(bits/pixel) 

Compression 
ratio 

     
HEO-II-100F (yes) 

H264/AVC 
NA 0.660 1.51 

KAMINSKY-100F (yes) 
H264/AVC 

35.85 0.0702 14.282 

JM9.5-100F (yes) 
H264/AVC 

35.93 0.0705 14.182 

FS (yes) 
H264/AVC 

36.33 0.384 2.60 

ANEA (yes) 
H264/AVC 

36.29 0.543 1.84 

NMC1 (none) 34.30 
 

0.380 2.63 

NMC2 (none) 27,93 0.104 9,59 

 
In Figure 7 the sub-images refer to the number of elements in , measured at the 

100th  frame (equation (21)).  
As we can see in Tables 1 and 3, SMNN gave good results demonstrating that the 

network is capable of RGB video compression. Note that SMNN does not require pre-
processing and all of results shown in this paper refer to the data without any 
secondary compression. Saving SMNN results to a hard-disk using trivial data 
compression can improve the final compression rates. 
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Fig. 7. Frame-by-frame evolution during compression of first 100 frames 

 

Fig. 8. Growth in the numbers of neurons during compression 

5 Conclusion 

This investigation and the detailed results for SMNN demonstrated that it is practical 
for RGB video and grayscale image compression and capable of producing results 
comparable to well-known methods. The reconstruction of the compressed image 
essentially occurs through data translation from neuron’s weights to the respective 
windows, without requiring additional mathematical operations. 
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