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Wavelet-based multifractal analysis of nonlinear time series: The earthquake-driven
tsunami of 27 February 2010 in Chile
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We study general multifractal properties of tidal gauge and long-wave time series which show a well defined
transition between two states, as is the case of sea level when a tsunami arrives. We adopt a method based on
discrete wavelets, called wavelet leaders, which has been successfully used in a wide range of applications from
image analysis to biomedical signals. First, we analyze an empirical time series of tidal gauge from the tsunami
event of 27 February 2010 in Chile. Then, we study a numerical solution of the driven-damped regularized
long-wave equation (RLWE) which displays on-off intermittency. Both time series are characterized by a sudden
change between two sharply distinct dynamical states. Our analysis suggests a correspondence between the pre-
and post-tsunami states (ocean background) and the on state in the RLWE, and also between the tsunami state
(disturbed ocean) and the off state in the RLWE. A qualitative similarity in their singularity spectra is observed,
and since the RLWE is used to model shallow water dynamics, this result could imply an underlying dynamical
similarity.
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I. INTRODUCTION

Tsunamis are long waves that are generated by submarine
earthquakes [1], landslides [2,3], volcanic eruptions [4],
and atmospherical phenomena [5,6]. Tsunamis can result in
extreme wave heights at the shore, while in the deep open
ocean they can have extremely small amplitudes and move
much faster [7,8], which makes it very difficult to detect them
throughout the ocean. Although the basic characteristics of a
tsunami wave are quite clear [7,8], its detailed behavior can
become extremely complex due to its strong dependence on
the local coastal topography [6,9–11]. This complex dynamics
has resulted in many numerical approaches of increasing
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complexity [12–14], all of them solving some form of a
nonlinear shallow water wave equation, which may be derived
from depth integrating the Navier-Stokes equations or from
first principles [15]. One commonly used nonlinear model of
shallow water waves is the regularized long wave equation
(RLWE) which has also been used to study some features of
fluid turbulence or spatiotemporal chaos [16].

A successful tool for studying this kind of complex behavior
is based on the wavelet transform and multifractal formalisms
[17–21]. Multifractal formalisms were introduced in the
context of fully-developed turbulence data analysis as a tool
for studying the experimental observation of departures from
the Kolmogorov theory (K41) on homogeneous and isotropic
turbulence [17]. The first successful multifractal description
of singular measures [22] was a statistical approach based on
the continuous wavelet transform [23]. Multifractal wavelet
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methods have been applied to fully developed turbulence,
econophysics, meteorology, physiology, and DNA sequences
[24] to cite a few applications.

In this paper we use an approach based on discrete wavelet
bases, namely, the wavelet leaders developed by Jaffard [18], to
compare the scaling behavior of an inertial subrange estimated
from the time series of an on-off intermittent solution [16] of
the RLWE with a qualitatively equivalent inertial subrange
estimated from the tidal gauge time series recorded at three
different stations along the Chilean coast when the earthquake
with a moment magnitude of 8.8 Mw occurred in the central
zone of Chile on 27 of February 2010 [25] (27F).

The paper is organized as follows. In Sec. II, we outline
the multifractal formalism based on wavelet leaders. Next, in
Sec. III, we describe the tidal gauge measurements used, the
locations from where the data was collected, the method used
to define our data time interval, and the results of applying the
wavelet leaders multifractal analysis. In Sec. IV we study a
spatiotemporally chaotic solution of the RLWE for a particular
on-off transition and compare our results, in a qualitative
manner, to the tsunami behavior according to their singularity
spectra. And finally, in Sec. V we present the conclusions of
our analysis.

II. OUTLINE OF MULTIFRACTAL FORMALISM

Let us consider a time series x(t), and let us measure its
local regularity around t0 by its Hölder exponent h(t0) � 0,
which is defined as the largest h such that

|x(t) − P (t − t0)| � C|t − t0|h, (1)

where P (t − t0) is a polynomial of order n, such that n <

h < n + 1 and C > 0 [26]. Now, let us denote by Eh0 the set
of all points on the real line (the time series support) with a
given Hölder regularity h0, such that 1 � dim(Eh0 ) ≡ D(h0)
is the Hausdorff dimension of Eh0 . Since time series have
finite resolution, it is not convenient to measure D(h) directly,
instead we resort to a multifractal formalism (MF) procedure.
To set up the MF we will use the wavelet leaders approach [27]
that has well established properties to analyze the multifractal
spectrum of discrete time series. Let ψ denote the mother
wavelet and define

ψj,k(t) = 2−j/2ψ(2−j t − k), j,k ∈ Z, (2)

as the dilated and translated wavelets, which form an or-
thonormal basis of L2(R). Note that k is the discretized time
translation and j is the time scale. The mother wavelet is
characterized by the number of vanishing moments, which
is defined by the positive integer Nψ � 1 such that ∀r =
0, . . . ,Nψ − 1, ∫

R

t rψ(t) dt = 0 (3)

and ∫
R

tNψ ψ(t) dt �= 0. (4)

Let

dx(j,k) =
∫

R

x(t)ψj,k(t) dt (5)

k

j

FIG. 1. (Color online) Space-scale plane and the dyadic tree.
Discrete wavelet coefficients d(j,k) are represented by dots (•) and
the dyadic interval λj,k by the surrounding rectangle. The shaded area
sketches the subset �j,k associated with the wavelet leader Lx(j,k)
(red middle dot), adapted from Ref. [21].

denote the (L1-normalized) discrete wavelet transform coeffi-
cients of x(t), where j is related to the time scale τ = 2j and
k to the time translation (t = 2j k). As defined in Ref. [21], the
wavelet leaders Lx(j,k) are multiresolution quantities defined
as

Lx(j,k) = sup
λ′⊂�j,k ; j ′�j

|dx(λ′)|, (6)

where λ′ = λj ′,k′ = [2j ′
k′,2j ′

(k′ + 1)[ and �j,k = ⋃
m∈{−1,0,1}

λj,k+m. The leader is defined along all the possible branches
spawned by the �j,k interval at all higher resolutions j ′ � j .
Hence, for a given k and j , the supremum is taken over the
region shown in the schematic representation of Fig. 1.

For a fixed time scale τ = 2j , the time averages of the qth
powers of the Lx(j,k) are referred to as the structure functions

SL(j,q) = 1

nj

nj∑
k=1

Lx(j,k)q, (7)

where nj is the number of leaders Lx(j,k) available at scale
2j . It can be shown that

SL(j,q) = Fq 2jζ (q) (8)

in the limit where 2j → 0 [28], and Fq is some constant.
Parisi and Frisch [17,29] introduced the so-called multifractal
formalism (MF), in which a Legendre transform establishes a
link between ζ (q) and D(h) as

D(h) = 1 + min
q

[qh − ζ (q)]. (9)

Therefore, the MF consists of obtaining an approximation of
D(h) from estimations of ζ (q) [21].

A last issue that should be remembered is the minimal
Hölder regularity to apply the MF, which imposes the condition
[30]

hmin = lim inf
2j →0

(
ln sup

k

|dx(j,k)|
ln 2j

)
> 0, (10)

which requires a bounded time series [26]. If this is not
satisfied, a fractional integration has to be done [31]. Note that
taking a derivative of order η ∈ N is equivalent to multiplying
the Fourier transform of the function by (iξ )η. Therefore, the
inverse operator (integration of order η) requires the division
of the Fourier transform by (iξ )η. This will produce a problem
if the Fourier transform does not vanish at the origin, therefore,
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the alternative operator

Î η(f ) = (1 + |ξ |2)−η/2f̂ (ξ ), (11)

where the hat (.̂ . .) denotes Fourier transform, is used, and
which has the same behavior at high frequencies as that of the
Riemann-Liouville fractional integral, but does not have the
drawback at zero frequency and can be extended to noninteger
values of η. This procedure shifts the Hölder exponents as

hIη(f )(x0) = hf (x0) + η, η > −hmin, (12)

which produces a well defined leader scaling function as
required [30,32].

The detailed derivation of the expressions recalled here, is
beyond the scope of this study and the reader is referred to
the books by Mallat [33] and Jaffard [18], and the citations in
this section. For the numerical estimation of the multifractal
quantities we used the MATLAB toolbox provided by Wendt
et al. [28,30], which uses Daubechies wavelets [34].

III. TIDAL GAUGE MEASUREMENTS

The big earthquake of magnitude 8.8 Mw that occurred
on February 27 of 2010 at 06:34 (UTC) in the central zone
of Chile was the result of the sudden displacement of the
Nazca plate under the South American plate in an area that
approximately extends from the peninsula of Arauco to the
north of Pichilemu city, over an approximate rectangle of
450 × 150 km2. The epicenter was located at −36◦17′23′′
(longitude) and −73◦14′20′′ (latitude) at a depth of 30.1 km
[25]. The first informed tsunami wave was located in
Pichilemu, at approximately 06:48 (UTC) [35], whereas in
Valparaı́so it was recorded at approximately 7:06 (UTC) [36].

The tidal gauge data we analyzed was obtained from the Sea
Level Station Monitoring Facility [36], collected from bottom
pressure sensors installed on Vaisala HydroMet MAWS110
equipment, with a sampling rate of 2 min (integrated time)
and a sea level resolution of ∼±1.5 mm (deduced from the
data). The 2 min sampling rate is contained in the time scale
range associated with a tsunami, which starts at about 1 min
[37]. Three Chilean stations were selected from north to south,
located in the following places: Coquimbo, Valparaiso, and

Ancud, as shown in Fig. 2. These stations are maintained and
operated by the Hydrographic and Oceanographic service of
the Navy of Chile (SHOA) [38].

In what follows we designate as “background” the quiet pre-
and post-tsunami oceanic behavior, for which the dynamics
results mainly from the gravitational and Coriolis forcing,
excluding other sources such as the atmospherical forcing.
For the perturbed oceanic behavior, not coming from an atmo-
spherical forcing but driven by the earthquake, we designate it
as “tsunami.” The leading tsunami wave (tsunami arrival) was
approximately determined by observing the deviation from
background tides in the tidal gauge records. To determine
the time interval to analyze the tsunami wave, note that a
tsunami introduces a strong perturbation in the statistical
distribution of the data. On the other hand, we assume that
the background is associated with a characteristic statistical
distribution to compare with the tsunami state. This statistical
characterization has some degree of variability due to the short
lengths of our data sets, which is imposed by the sampling
rate (2 min) and the tsunami time scale. Since the statistical
moments of the increments are the structure functions of
the time series [17,39], we begin by taking a time window
of approximately 22 days, beginning at the tsunami arrival,
and move it forward in time in steps of a day (720 points),
resulting in 25 windows to analyze. Note that we take the
background after the earthquake because the data has less
gaps in that interval. According to Eq. (8) the function ζ (q)
is related to the statistical moments of the time series [17].
Consequently, to obtain a qualitative measure of the range of
variability of the statistical distribution of the time series, we
can use the function ζ (q) for each data set contained in our
moving window. In Fig. 3 we see the range of variability of
ζ (q), which is related to the statistical distribution variability,
after the tsunami arrival for the three locations. Note that
it is possible to observe how the structure functions scaling
exponents gradually converge, not to a single curve, but to a
range of nonforced variability. For comparison we also show
the probability density function (PDFs). In this way, we find
the time shift which results in a value of ζ (q) that is in the
range of nonforced variability, i.e., that excludes the tsunami.

From this calculation results that with more than seven days
of elapsed time (this is not shown in Fig. 3), the tsunami effects

FIG. 2. Tidal gauge stations and the earthquake epicenter. The location of the tidal gauge stations is indicated with diamonds (♦) and the
epicenter of the earthquake is indicated with concentric circles ( ). This figure was taken from Google Earth. The epicenter was obtained
from the Seismological Service of the University of Chile [25].
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FIG. 3. (Color online) Range of variability of the structure function scaling exponent and the estimated PDFs. Observe the convergence
zone for [(a),(b)] Coquimbo, [(c),(d)] Valparaı́so, and [(e),(f)] Ancud as we move out from the tsunami arrival. The analyzed time series is
associated with the black circle dashed line and the time series containing the tsunami is related to the red square dashed line.

are negligible, and from the dyadic restriction that imposes that
our time series must have a length of 2n points, we choose a
length of 8192 points or ≈11 days beginning at the tsunami
arrival, a time interval that encompasses the tsunami perturba-
tion. Note that this result depends on the geographic location.

Therefore, for the tsunami data we took points starting near
the leading tsunami wave, after the earthquake [25], while for
the background data we took a different starting point for each
location in order to analyze the data of best quality, that is,
with less gaps contained in the time window to be analyzed.
Specifically, we start 14 days after the 27F event for Coquimbo,
21 days after the 27F event for Valparaı́so, and 16 days after the
27F event for Ancud, all of them well beyond the “ringing” pe-
riod [37]. We used approximately 11 days of data (8192 points)
for both background and tsunami. The detide was done through
the empirical mode decomposition (EMD) method [40,41],
which is different from the empirical orthogonal function
(EOF) expansion, also known as the principal component
analysis or singular value decomposition method. The EMD
method is built on the idea of identifying the various scales
in the data that are used to characterize the multifractality;
therefore, orthogonality is not a consideration, but scales

are. Since orthogonal decomposition is a characteristic for
linear systems, violating this restriction is not a shortcoming.
By this method, the signal is decomposed in intrinsic mode
functions (IMF) which may or may not be orthogonal. In our
application, we extracted the tides by retaining the first three
IMFs, corresponding to the high frequency range. Figure 4
shows the sum of them, a sample (four days) of the sea
level measurements for each location, starting near the leading
tsunami wave. Since the wavelet analysis needs a constant
sampling rate, a few gaps (less than 2%) in the data were filled
with a linear interpolation. This interpolation should not affect
our results because of two reasons: first, we used Daubechies
wavelets with Nψ = 33 [42], therefore the linear part is taken
out by the wavelet filtering as shown by Eq. (3), and second, the
number of interpolated points is a small fraction of the total
number of data points measured (<2%). We computed the
singularity spectrum D(h) of the background time series using
a mother wavelet with an increasing number of null moments,
from Nψ = 3 to Nψ = 40. Around Nψ = 33 we obtained a
nearly invariant singularity spectrum estimation (this remnant
variability is expected to exist due to the nonstationarity of the
dynamics). We use this value for the rest of the paper.
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FIG. 4. (Color online) The detied tidal gauge measurements used in this study. From top to bottom we show Coquimbo, Valparaı́so, and
Ancud. A black line represents the background in the right panels and a red line represents the tsunami in the left panels. The insets show a
zoom of the background around day 2.

From Fig. 4 it is readily apparent the large impact of tsunami
waves when compared to the background behavior. However,
the background also possesses a complex dynamics that
includes the tides, the Coriolis forcing (inducing geostrophic
flow), and the atmospherical forcing [43,44]. Those combined
effects produce in some locations Fourier spectra with as
many as 390 modes [43], with fractal properties [45–47].
Therefore, we can apply the MF to extract part of its statistical
properties and observe how its multifractality changes under
the tsunami forcing. We searched for scaling behaviors in
the wavelet leaders calculated from the time series [28], as
shown in Fig. 5, where the selected scaling region [Eq. (8)]
is shown for both background and tsunami, according to the
measurements at the three stations and the procedure to define
them as described above. As established by Eq. (10), we
need hm > 0, however, a direct calculation for the tsunami
time series gives hm < 0 for all three stations. For Coquimbo
we obtained hm ≈ −0.316, for Valparaı́so hm ≈ −0.366, and
for Ancud hm ≈ −0.271. Therefore, we apply the minimal
order fractional integration with η > −hm such that we
obtain a spectrum ζη(q) that produces a Dη(h) with hm > 0.
This value of η is used to construct ζ (q) = ζη(q) − qη and
D(h). After the fractional integration of a given order η

for each site, the alignment region [48] (scaling region)
persisted.

Even though other scaling regions were found, we chose the
range 8–32 min which is inside the characteristic scaling region
of tsunami waves (1–100 min) [37], and it was consistently
observed for all three locations, in both background and
tsunami time series.

In Fig. 6 we show the scaling exponents ζ (q) deduced
from Eq. (8), for background and tsunami, at all three stations.
The range of q values used was obtained from the empirical
criterion described in Ref. [49] (compare with the wavelet
linearization criteria [50]). The nonlinearity of these curves
is related to intermittency, which usually is associated with a
departure from Gaussianity or monofractality [17], represented
by a straight line. Therefore, both background and tsunami
are intermittent according to their scaling exponents. The
tsunami data displays a stronger intermittency, as shown for
q > 0, which focuses on large amplitude fluctuations. The
intermittency in the background data means that extreme
events are always present in the ocean and the tsunami forcing
leads to a statistical enhancement of these extreme events.
Also, note that the intermittency during the tsunami is strongly
dependent on the location, while for the background it does
not seem to change appreciably. This highlights the role of the
local topography and bathymetry, which contribute with their
own resonances to tsunami events and in general to seiches
and harbor oscillations [37].
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FIG. 5. (Color online) Scaling region (alignment region [48])
selected in this study, for background (left) and tsunami (right). The
upper panel corresponds to Coquimbo, the middle panel to Valparaı́so,
and the bottom one to Ancud. The scaling region is between the two
thick blue lines and the red dashed line shows the upper bound for
tsunami spectra (≈100 min). The order η of the fractional integration
for tsunami is also shown, which is not required for background.

Finally in Fig. 7 we show the estimated singularity spectrum
D(h) [Eq. (9)] for each location, for both background (black
dots) and tsunami (red squares). The change in D(h) from
background to tsunami is readily apparent. After the tsunami
arrives the singularity spectrum of the ocean has an enlarged
range of Hölder exponents, which is associated with the
emergence of new fractal sets [20], related to the wave
dynamics. We also observe a dependence on location, as
expected. Figure 7 shows that the singularity spectrum D(h) of
the tsunami extends over h < 0, which suggests that the signal
slope is locally not bounded. Another interesting feature is
suggested by the singularity spectrum associated with Ancud,
which possesses the most complex dynamics of the three
locations. As shown in Fig. 7(c), it has a tendency to D(h) < 0
in the right section of the spectrum; this nontrivial behavior
may be related to models of random fractals [51,52] and will
be further analyzed elsewhere.

Although the physical picture responsible for the observed
tsunami dynamics is not well understood at present, we
know that the unboundedness of certain quantities is not
uncommon in physical models. For example in the context
of fully developed turbulence an unbounded velocity may
be the result of the compressibility of the fluid [17]. In our
context, we could expect that the negative values for the
Hölder regularity may have to do with the highly complex sea
surface behavior associated with dynamical processes excited
by the tsunami energy injection. For example, it is known
that the air entrainment produced by the wave breaking [53],
which is increased during a tsunami event, may change the
water compressibility in the mixing layer [54]. If the void
fraction is increased by the air entrainment, then the sound
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FIG. 6. (Color online) Structure function scaling exponents cor-
responding to tidal gauge measurements in Fig. 4, in the same order:
(a) Coquimbo, (b) Valparaı́so, and (c) Ancud. For tsunami we used
red squares, and for background, black circles. The order η of the
fractional integration is also shown. Bootstrap error bars are included.

speed in water can become smaller than the sound speed in
air [55], which could make water at the wave surface even
more turbulent [56]. Hence, this chain of events could suggest
an ingredient contributing to the highly complex sea surface
dynamics associated with values of D(h) for h < 0, obtained
by our analysis, in the tsunami data.

Now we will analyze the meaning of h < 0 by an in-
dependent approach. As already shown [20], this is due to
jumps in the signal, which are also a well known characteristic
of shock waves. This last issue was noted by Salem et al.
[57] when they analyzed the properties of the ambient solar
wind, without distinguishing between slow and fast streams.
The resulting structure functions are a consequence of a
statistical mix of slow and fast wind properties, including the
rapidly changing boundaries between slow and fast wind and
interplanetary shocks. As in our case, their structure function
scaling exponents curve down for increasing q (Fig. 2 in
Ref. [57]) and this, when applying a Legendre transformation,
results in a singularity spectrum D(h) defined for h < 0.
We follow their procedure to show that by removing the
large amplitude tsunami waves, we obtain a nondecreasing
function ζ (q). Since this procedure involves a filtering on the
amplitude, we have to remove the background tides and other
nonlinear waves, whose amplitude variations are similar in
amplitude or height to the tsunami, and this time, instead
of splitting the signal in IMFs, we use the usual harmonic
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FIG. 7. (Color online) Singularity spectra corresponding to tidal measurements in Fig. 4, in the same order: row (a) Coquimbo, row
(b) Valparaı́so, and row (c) Ancud. For tsunami we used red squares, and for background, black dots. Note that for tsunami, D(h) is defined for
h < 0. The order η of the fractional integration is also shown. Left and right columns show the error estimated with a bootstrap [28]. The thick
gray line shows the divide between background and tsunami at h = 0.

analysis [43]. For removing the large amplitude waves, we
used Daubechies wavelets and following Salem et al. [57], we
define a scale-dependent threshold ηj ,

η2
j = F 〈|dx(j,k)|2〉k = Fσ 2

j , (13)

where σ 2
j is the variance at scale j calculated over all points

k. The conditioning factor F is a constant, independent of
scale, arbitrarily chosen, with the only restriction that not too
many points should be excluded by the conditioning. Thus,
we consider the background component as characterized by
|dx(j,k)2| < η2

j , while the tsunami component is defined by
|dx(j,k)2| � η2

j .
Figure 8(a) shows the detided tsunami time series for

Valparaı́so, where we see that the maximum wave height
was a little over 2 m. Figure 8(b) shows the result after the
wavelet filtering defined by Eq. (13), for the estimated tsunami
[red (light gray)] and background (black), in both cases using
Daubechies wavelets with Nψ = 10 and F = 0.1. Figure 8(c)
shows the structure function scaling exponents estimated for
the measured background (black dots) and ten curves from the
filtering procedure with F = 0.1 × i, for i = 1, . . . ,10. No
value of F reproduced the estimated measured background
ζ (q) function from the tsunami filtering.

This result leads us to two conclusions. First, after removing
most of the large amplitude waves, the structure function
scaling exponent ζ (q) becomes a nondecreasing function of q.
Therefore, after applying the Legendre transformation, there
will be no values of D(h) for h < 0. Thus, a singularity
spectrum D(h) defined for h < 0 is a characteristic of a
tsunami (more specifically, of a signal with an envelope
resembling that of a tsunami). And second, this estimated
background does not behave statistically as the measured
background. To understand this, recall that we have arbitrarily
given a recipe to extract the tsunami waves, which is a
strong energy injection mechanism. Therefore we should

expect the energy distribution in this region to be different
from the background. When we have a tsunami at the
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FIG. 8. (Color online) Tsunami filtering for Valparaı́so.
(a) Detided tsunami time series; (b) the filtering according to
amplitude variance produces an estimation for background (black
line oscillating around zero amplitude) and tsunami; and (c) structure
function scaling exponents ζ (q) for estimated backgrounds and
measured background in black dots.
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FIG. 9. (Color online) Several singularity spectra for background
at Valparaı́so. We took 21 time series of about 11 days, with exactly
one nonoverlapping day. Five of them in the last part of March of
2010 and 16 in January of 2010, with 8192 points each. As shown,
the estimation of D(h) to the left of its maximum, which is associated
with q > 0, is very stable. The thick green dashed line represents
the mean value. The parameters used were Nψ = 33, j ∈ [2,4], and
q ∈ [−4,6]. Bootstrap error bars are included.

measurement point, the tsunami energy cascades from large to
small scales, inducing wave amplitude perturbations similar
to those commonly seen in the background state, however,
our calculations suggest that their statistics are different for
all wave amplitude perturbations. This means that we cannot
completely remove the perturbation in the statistical wave
height distribution, introduced by the tsunami forcing, using
only Eq. (13). Hence, this is a completely nonlinear system in
which the small and large amplitudes are intrinsically coupled
by the turbulent energy cascade, related to its multifractality.

A last issue regarding the data analysis is the robustness of
our estimation. In Fig. 7 we showed the bootstrap estimated
error (or confidence intervals) for the singularity spectrum
estimation. Since a tsunami is a unique event, this technique
provides valuable information. However, the background for
each location can be regarded as a dynamic state of low
statistical variability for time periods not including strong
atmospherical forcing, as suggested by Fig. 3. Since this is
our case in a temporal neighborhood of the tsunami event, we
can obtain several estimations of D(h) for the background.
This will provide us with a more accurate estimation for the
bounds of variability of D(h) for the background. In Fig. 9
we show the result after taking 21 time series, each containing
8192 points, 16 time series before the tsunami and 5 after
the tsunami and beyond the ringing period. As shown, the
estimated singularity spectrum is very stable, especially in
the region to the left of the maximum, where in the case of
the tsunami a range of h < 0 would appear. This is an
additional test to the statistical significance of the estimations
shown in Fig. 7.

IV. SOLUTIONS OF THE REGULARIZED
LONG-WAVE EQUATION

Since the RLWE basically describes the dynamics of
shallow water long waves, it is tempting to associate the in-
termittent behavior observed in this model to the background-
tsunami transition observed in the previous section. In this
section we will describe the on-off intermittent states for a

particular solution of the RLWE through the MF to compare
with the results of the previous section.

The RLWE was proposed by Peregrine [58] and Benjamin
[59] as an alternative to the Korteweg–de Vries (KdV)
equation, since some mathematical properties of the KdV
equation, such as the existence and stability of solutions, are
difficult to study. Later, He [60] derived this same equation
as a model for nonlinear drift waves in plasmas with an ad
hoc periodic driving and damping terms in order to study the
transition to chaos. Therefore, the driven-damped RLWE is
given by Ref. [60]

∂tφ + c ∂xφ + f φ ∂xφ + a ∂txxφ = −ν φ − ε sin(x − � t),

(14)

where a, c, and f are constants, ν is a damping parameter, ε is
the driver amplitude, and � is the driver frequency. Originally,
Peregrine [58] obtained Eq. (14) without the two terms on the
right-hand side from the momentum equation for the mean
horizontal velocity of water elevation φ(x,t) of an irrotational
flow by assuming that waves only travel in one direction and the
ratios between wave amplitude and water depth and between
water depth and wavelength are small. Here, wavelength means
the distance in which significant changes in surface height
occur. The third-order derivative term in Eq. (14) expresses
the effect of the vertical acceleration of water on pressure.

Following Rempel et al. [16], we define periodic boundary
conditions φ(x,t) = φ(x + 2π,t) and solve numerically with
a = −0.287 11, c = 1, f = −6, ν = 0.1, and � = 0.65.
These parameter values can be chosen arbitrarily with the
exception of a, which must be negative for physical reasons
and to avoid numerical instability [60]. Here, the values
are chosen in order to qualitatively model the statistical
properties of a tsunami wave with an intermittent behavior
previously studied in the RLWE [61,62]. Thus we fix the driver
amplitude ε = 0.2001. For the details of the pseudospectral
numerical solution see Ref. [16]. A typical example of an
on-off intermittency described by this equation is shown in
Fig. 10, where we show the amplitude evolution for a fixed
point in space, φ(x0,t), with x0 ≈ 1.885.

The on state is characterized by a temporally chaotic and
spatially regular behavior, while the off state is characterized
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FIG. 10. On-off intermittent solution of the driven-damped
RLWE, showing the behavior of φ(x0,t), with x0 ≈ 1.885. The
solution alternates randomly between on and off states. Here we
show one of those on-off transitions.
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FIG. 11. (Color online) Logarithm of structure functions vs scale
j , for on state (a) and off state (b) of the RLWE. Note the scaling
region from j = 5 to j = 8.

by spatiotemporally chaotic patterns. The transition from
spatial regularity to spatial irregularity is due to an attractor-
widening crisis that occurs after the collision of the spatially
regular attractor with an unstable saddle orbit, a behavior
described in a series of papers [63–65]. It is important to
recall at this point that we are not modeling the tsunami wave
behavior realistically as it approaches the coast. Nevertheless,
the statistical properties of the tsunami wave are similar to
this particular solution of the RLWE, which again suggests
a similar dynamical origin for those statistical behaviors, as
we will substantiate below. For each state (on/off) we observe
different scaling behavior as exemplified in Fig. 11, which was
obtained using Daubechies wavelets with Nψ = 21 [42] since
the intermittent solution is very smooth at short time scales.

Hence we are interested in the fractal-like behavior at larger
time scales.

From the scaling analysis shown in Fig. 11, we obtain
Fig. 12. Figure 12(a) shows intermittency for the range of
scales selected and that intermittent behavior increases from
on to off states [17]. For the off state we also followed the
empirical criteria of Ref. [49]. This result can be interpreted
in terms of multifractality as shown in Fig. 12(b) where we
estimate the singularity spectrum D(h) [19], which gives
approximately the dimension of the set of points in the time
series that locally scale as ∼2jh(t0) [21]. First, we observe
that D(h) shows a change in the sets that bound and define
the dynamics, and also the emergence of new ones. This
is a behavior expected according to Chian et al. [62]. The
increase in the range for h corresponds to the emergence of
new fractal sets from the on to the off state. Second, from the
definition of the Hölder regularity [18] we know that increasing
values of h correspond to a more regular behavior. Therefore,
Fig. 12(b) shows that the main component of the off state is
less regular than the main component of the on state. We know
that in the off state the amplitude changes more chaotically
than in the on state, which is consistent with the transition
from temporal chaos to spatiotemporal chaos. Recall that the
RLWE belongs to a class of equations whose solutions may
develop the phenomenon known as wave overturning or wave
breaking [66], where the derivative of the wave profile becomes
undefined. In our case, the wavelet filtering captures a set of
points that behaves locally as jumps at coarse scales, although
at finer scales our solution does not show jumps nor wave
overturning. We want to emphasize that this is not an artifact
of the procedure since any natural phenomena (what we want
to approximate) resembling fractality is strongly dependent on
a particular range of scales, in our case the coarse scales [67].

Since the RLWE basically describes the dynamics of
shallow water waves, it is tempting to associate the on-off
transition with the background-tsunami transition since their
related detailed statistics behave in a similar manner as we have
shown above. As suggested in our modeling, the tsunami state
could be associated with the topological change and/or the
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emergence of complex high dimensional (in the phase space)
dynamical structures as suggested by Rempel et al. [16], which
would drive the dynamics of the flow and therefore the surface
wave behavior that we observe as sea level variation in the way
described by D(h). Although much more research is needed
to corroborate this hypothesis, our results suggest a relation
between this model for shallow water waves and the sea level
variations caused by a tsunami.

V. CONCLUSIONS

We studied the impact of a tsunami arrival on the mul-
tifractal behavior of the ocean, for the coastal region of
Chile, impacted by the earthquake of 27 February 2010. We
concluded that the pre- and post-tsunami quiet background
states can be regarded as of low statistical variability, for the
three selected locations, over a time scale of two to three
months (quiet atmospheric conditions were observed). We also
observe a strong change associated with the tsunami arrival,
with the most striking characteristic being the appearance of a
multifractal subset for h < 0 in the singularity spectrum D(h),
which could be related to the presence of shocks [57].

Regarding the RLWE model, although being one-
dimensional and solved with periodic boundary conditions, it
still shows a behavior that is qualitatively similar to a tsunami.
This suggests that from the viewpoint of dynamical systems,

the underlying cause, assumed the same in both cases, is
very robust. Let us remember that the RLWE was introduced
as a mathematical model for the unidirectional propaga-
tion of long waves in systems that manifest nonlinear and
dispersive effects [59], therefore, we believe our results justify
to some extent its usage. In this scenario, the tsunami state
could be associated with the topological change and/or the
emergence of complex high dimensional (in the phase space)
dynamical structures as suggested by Chian et al. [62] and
Rempel et al. [16], which would drive the dynamics of the
flow and therefore the surface wave behavior that we observe
as sea level variations in the way described by D(h).
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