Preparation of a filter to correct drop size distributions of Parsivel disdrometer based on the particle speed limitation

Izabelly Carvalho da Costa¹ Luiz Augusto Toledo Machado²

National Center for Natural Disaster Monitoring and Alerting – CEMADEN
National Institute for Space Research – INPE

<u>izabelly.costa@cemaden.gov.br</u>, <u>luiz.machado@cptec.inpe.br</u>

Summary

- Purpose
- Data
- Methodology
- Results

Purpose:

- ☐ The objective is to bring similar concentration of rain drops values from different types of disdrometers.
- □ To reach this goal, and in the framework of the CHUVA experiment at Vale do Paraíba, the Joss-Waldvogel disdrometer is used as reference and a filter has been developed in order to eliminate inconsistent data measured by the Parsivel one.

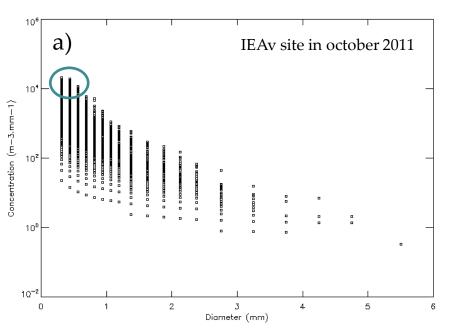
Data

- □ CHUVA Experiment Vale do Paraíba SP (30 October 2011 18 March 2012)
 - □ Disdrometers (Joss and Parsivel)
 - □ Droplet Size Distribution;

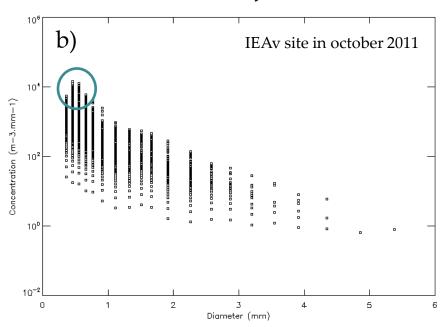
Parsivel

Joss -Waldvogel

Methodology


The concentration of droplets is based on the following equation:

$$N(D_i) = \frac{n_i}{F.t. v(D_i). \Delta D_i}$$


n_i	Number of drops measured in drop size class i during time interval t	
t	Time interval	S
F	Size of the sensitive surface of the sensor	$m^2 (F=0.005 m^2)$
D_i	Average diameter of drops in class i	mm
$v(D_i)$	Fall velocity of drop with diameter Di	m/s
ΔD_i	Diameter interval of drop size class i	mm

Methodology

Concentration of the Parsivel disdrometer

Concentration of the Joss disdrometer

The parsivel disdrometer overestimates the first diameter classes, on the contrary to the results issued from the Joss-Waldvogel disdrometer.

→ For this reason that a filter has been developed.

Methodology

□ Based on these observations, we have computed the average speeds and standard deviations for each diameter class of the Parsivel disdrometer.

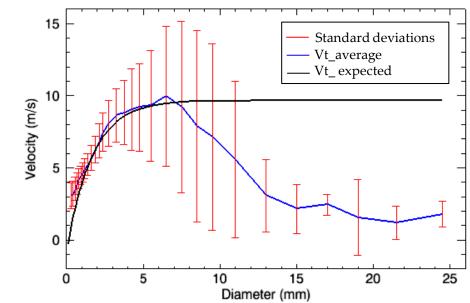
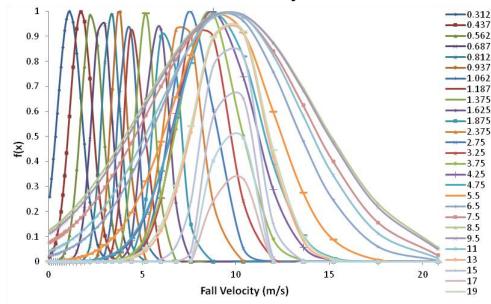


Figure 2 – Average speeds and standard deviations for each class of diameter.


$$V(D) = 9.65 - 10.3exv^{-6.D}$$

Atlas et al. (1973)

- The results show that for classes up to 7mm the results seem to be similar.
- we use the expected fall velocity and standard deviations for the preparation of the filter.

Methodology

- □ For each diameter class has been calculated the Gaussian curves using the expected fall velocity and the standard deviation.
- □ Based on that curves, for each class of diameter. It is possible to determinate the minimum and the maximum of the fall velocity.

Figure 3 – Gaussian curves for each class of diameter.

Results

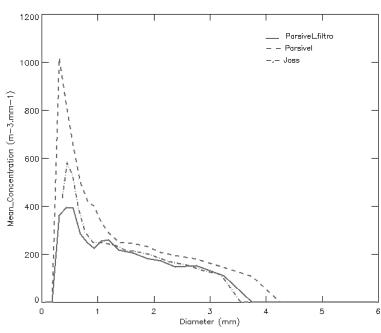


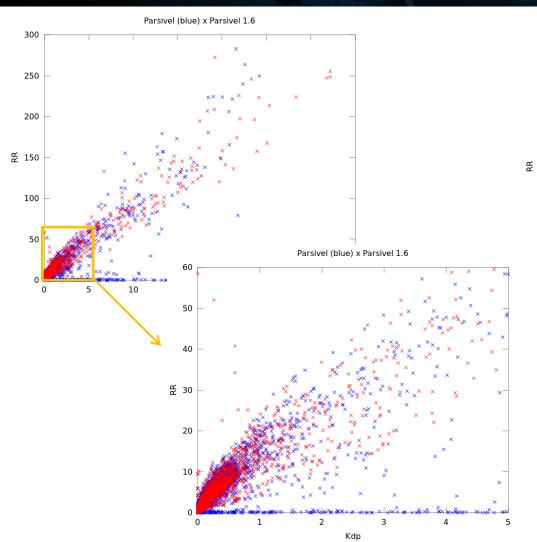
Figure 4 – Average concentration for each class of diameter.

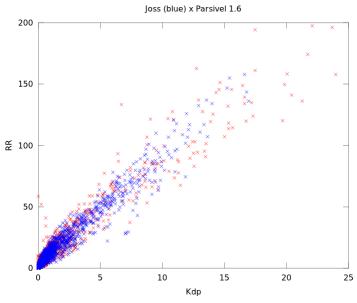
Differences observed between the two instruments, in particular for diameters < 1 mm.

The average concentration from the filtered-Parsivel configuration is more similar to the concentration from the Joss instrument.

→ Still have differences for diameters < 1 mm

Results




- →A factor of 1.6 allows to improve the average concentration of Parsivel, for most of the classes in comparison with the Joss concentrations.
- → There is still a weak difference around 1mm.
- → We can observe that the 2 distributions seem to be similar.

Thank you!

