

Inverse Problem of Coulomb's Law: Preliminary results on Belém Campaign.

Moacir Lacerda¹, Carlos Augusto Morales Rodrigues², Evandro Moimaz Anselmo², Rachel Albrecht³, Wagner Dal Piva Rocamora¹, Kaian Lopez Fernandes¹, Robson Jaques³

 Laboratório de Ciências Atmosféricas da Universidade Federal de Mato Grosso do Sul (LCA-UFMS);
 Instituto de Astronomia, Geofísica e Ciências Atmosféricas -Universidade de São Paulo (IAG-USP);
 Instituto Nacional de Pesquisas Espaciais (INPE)

The inverse problem

BENE		OUT		AERO	
1.4749 -48.3017	-1.3167	-48.447	-1.2673	-48.4824	-1.3845
1.	4749 -48.3017	4749 -48.3017 -1.3167	4749 -48.3017 -1.3167 -48.447	4749 -48.3017 -1.3167 -48.447 -1.2673	4749 -48.3017 -1.3167 -48.447 -1.2673 -48.4824

BENE = Benevides, OUT = Outeiro, AERO = Aeroporto.

Field mill network

Passagem da Fab, 197-399 - Itaiteua Belém - PA, 66842-050

Rod. Artur Bernardes, 5694-7000 - Val-de-cães Belém - PA, 66115-000

R. Augusto Corrêa, 1311-1591 - Guamá

methodology

- Step1. Analize radar image to localize the possible centers of charge Pj(xj, yj, zj).
- Step2. Construct the function Ri,j, where the index *i* refers to the position of field mill and *j* refers to the center of charge.

$$\frac{R21}{\left[\left(x^2 - xn^2\right)^2 + \left(y^2 - yn^2\right)^2 + \left(z^2 - zn^2\right)^2\right]^2}$$

$$\left[\left(x^2 - xn^2\right)^2 + \left(y^2 - yn^2\right)^2 + \left(z^2 - zn^2\right)^2\right]^2$$

$$Step 3.Calculate column vetor $q := \left(R^T \cdot R\right)^{-1} \cdot R^T \cdot E$$$

Step 4. Use Coulomb's Law to calculate the direct value

•
$$Ec_i = \Sigma_{ij} (R_{ij} \cdot q_j)$$
 for fitting data

Results: STEP1

Step 2 and 3

Elc = 687.734 El = 925.4 E2c = 2161.2655 E2 = 2829.769 E3c = 2057.6156 E3 = 1276

STEP 4

Benevides

Outeiro

Aeroporto

Calculated results 1 (matrix)

file	h1 (m)	h2 (m)	h1+h2/10 0	q1 (C)	q2 (C)
1a	2000	6000	2060	-853	418
1	2000	7000	2070	-622	307
2	2000	8000	2080	-490	245
3	2000	9000	2090	-403	208
6b	3000	6000	3060	-723	506
4	3000	7000	3070	-511	352
5	3000	8000	3080	-390	273
6	3000	9000	3090	-314	277
7	4000	7000	4070	-524	439
8	4000	8000	4080	-379	321
9	4000	9000	4090	-295	259
9a	4500	9000	4590	-301	281
10	5000	7000	5070	-669	625
11	5000	8000	5080	-432	409
12	5000	9000	5090	-317	311
mean	3433	7800		-481.53	354.14

2.(grafic)

discussion

- This methodology is not closed because
- of the nature of the inverse problem that
- has infinite solutions.
- The increasing knowledge of position and
- sign of charges means more confidence in charge magnitude.
- This knowledge can be given by balloons
- (Stolzenburg et al. 1998a, b and c).
- For a more detailed discussion on some
- improvement of this methodology see for
- exemple, Lacerda et al 2012b.

Conclusions

- In this paper we present a methodology for calculating charge structure in convective clouds. The electric field measured by a network of field mill is fitted by calculated field and seems be in reasonable agreement. The magnitude and location of charge centers were calculated and charge magnitude is of order of 4 x10² C
- q(3433) = -481.53 C q(7800)= 354.14 C
- This result is greater than values presented in literature. For a better improvement of this methodology we recommend the use of other techniques that allow detect the position of centers and the sign of charges in that center.

Thanks

- moacirlacerda@gmail.com
- moacir.lacerda@ufms.br