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ABSTRACT 

This paper examines the properties of wave propagation in transmission lines with periodic LC and CL cells, taking into 
account ohmic losses in resistors connected in series to lumped capacitors and inductors. First order time differential 
equations are derived for current and charge, thus allowing analysis of transient regimes of the lines being excited by a 
pulse of arbitrary shape. In particular we examine the propagation characteristics of periodic lines in which identical 
unit cells are repeated periodically and also discuss the interpretation of positive and negative phase velocities associ-
ated with the LC and CL topologies. Loss effects on the propagation bandwidths of both lines are also discussed, and it 
is shown that in the left-handed transmission line (CL configuration) the phase advance of the crest of the transmitted 
signal with respect to the source signal is due to the intrinsic dispersive nature of the CL line which, in contrast to the 
LC line, is highly dispersive at low propagation factors. 
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1. Introduction 

Characterized by negative constitutive parameters (elec-
tric permittivity and magnetic permeability) metamaterial 
[1-3] is an artificially produced material which exhibits 
properties not found in nature. Such materials are often 
referred to as LH (left-handed) media to express the fact 
that they permit propagation of electromagnetic waves 
with the electric field, the magnetic field and the propa-
gation vector forming a left-handed triad, in contrast to 
conventional materials in which the triad of these three 
vectors follows the right-hand rule. However, showing 
losses and having operation limited to narrow frequency 
bands, it was soon found that such resonant structures, 
such as split-ring resonators, become difficult to imple- 
ment for microwave applications [4,5]. But as early as 
2002, there has been proposed [6-9] the use of transmis- 
sion lines—structures that are not resonant, low-lossy 
and allows wide frequency range of operation—to im- 
plement and put into practice the concept of metamateri- 
als [10-12]. 

From the above, this paper examines the properties of 
wave propagation in transmission lines with periodic CL 
cells (C and L denoting the series capacitance and shunt 
inductance in each cell). As will be discussed, such a CL 

line exhibits a characteristic of left-handed (LH) medium 
in that the phase velocity is negative, namely, with direc- 
tion opposite to the group velocity. In a comparative 
study, an analysis is made of its dual line LC (L and C 
denoting the shunt capacitance and series inductance in 
each cell). To this end, by assigning the charge in the 
capacitor and the current flowing in the inductor as state 
variables, first order time differential equations are de- 
rived for a general CL line and its dual configuration LC. 
The equations so derived allow the transient analysis of 
the lines being excited by a pulse of arbitrary shape. We 
also investigate the properties of propagation in the 
steady state sinusoidal regime and examine the disper- 
sion characteristics of lossy lines by identifying the fre- 
quency bands and group delay in the frequency range 
100 kHz to 1 MHz. 

2. Circuit Equations 

2.1. Line LC 

Figure 1(a) shows a generalized LC line, where the as-
signed state variables are the loop current Ik in a generic 
section k and the corresponding charge Qk stored in the 
capacitor. Of importance from the numerical standpoint, 
these variables were taken so that the line differential 
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equations are all first order. The line is further assumed 
to be lossy, where each inductor has an associated resis-
tance rL,k, each capacitor has a resistance rC,k and the 
generator has a resistor rs. 

On the basis of Kirchhoff’s laws of voltage and current, 
we then arrive at a generalized transmission-line equation 
that applies for any number N of sections k. For the LC 
line, the circuit equations are written for three categories 
of sections: starting, intermediate, and ending sections. 

Starting section: 
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where k = 1 and Vs is the input voltage, which may be a 
sinusoidal signal or a pulse of arbitrary shape (trapezoi-
dal, triangular, etc.). 

Intermediate segment: 
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Ending segment: 
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2.2. Line CL 

Unlike the previous case, in the CL topology (Figure 
1(b)) the state-variable current flows in the shunt branch 
L-rL of each section, so that that the CL line is described 
by a pair of equations: 
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where kIs  and  are recursive functions defined as kQs
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in which [ ]mult k  is the k-th element of the array 

{ },c j k  and the denominator term , 1,j N=r L [ ]den k  is 
the k-th element of { }, 1,k jL C j N= as detailed in the 
Appendix. 

3. Dispersion Relations 

3.1. Line LC 

To analyze the steady-state sinusoidal regime of a peri-
odic line with elements , ,  and 

k , we consider the spatial and temporal variations 
in the form 

, ,C k C L k L kr r r r C= = =

)nω β

C
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(exp i t− −   , where n x p= , with x 
denoting the position of a node with respect to the source 
at x = 0, p representing the hypothetical length of the unit 
cell; β is the propagation factor, a complex quantity 
which quantifies the attenuation and phase shift across 
each cell. Then the voltage and current equations for the 
LC line (Figure 1(a)) are 
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where Uk is the voltage across the shunt capacitor of the 
k-th section. Noting that the time derivate of the currents 
Ik is ik kI Iω′ = − , from the assumption of time-harmonic 
variation, and i

1 ek kI I β±
± = , from the periodic boundary 

conditions, Equation (6) takes the form 
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Figure 1. Line topologies (a) LC and (b) CL. 
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which leads to the dispersion relation 
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with 0 0 0 0, 1 , ,L CLC a r Z b r Zω ω ω ω= = = = , and  

0Z L C= . 
For a lossless LC line (a = 0, b = 0), Equation (8) re-

duces to 

(2 24sin 2ω = )β              (9) 

where the propagation factor β is real for 0  and 
becomes complex, when 0  as illustrated by the 
blue curves in Figure 2. In this plot, both the attenuation 
and phase shift per section are normalized to π; for ex-
ample at 

2ω ω<
2ω ω>

0 1ω ω = , the phase shift per section is read as 
0.331π. Having no cutoff frequency, the RH periodic line 
exhibits the behavior of a low-pass filter. Propagation 
starts from zero frequency until the critical frequency 

0  with no attenuation, as demonstrated by verti-
cal branch of the dashed blue line ranging from ω = 0 to 
ωc. But for lossy lines, attention coexists at all frequen- 
cies since the attention curves bend rightwards. In addi- 
tion for frequencies up to 0c  the RH line behaves 
as nondispersive medium, in which the propagation fac-
tor 

2cω ω=

ω ω≤

{ }Re β  is a linear function of frequency. 

3.2. Line CL 

Analogously to the previous case, the voltage and current 
equations for the CL line (Figure 1(b)) are written as 
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which for the lossless case reduces to 
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1
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ω
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The presence of the negative signal (coming from the 
ambiguity of ± square root sign) is justified by examining 
Equation (12) in the limit 1β  , which leads us to 

1 LCβ ω= ± , where p

 

Figure 2. Dispersion/attenuation diagram for the LC line. In 
lossy lines , propagation and attenuation coexist at 

all frequencies. In the horizontal axis, the attenuation 

( , ≠a b 0)
{ }Im β  

(dashed curves), and phase shift per section { }Re β  (solid 

curves) are both normalized to π. 
 

 

Figure 3. Dispersion/attenuation diagram for the CL line. 
 

gives
i i 1

i
C L LC

β
ω ω ω

−= =  in the limit 1β  . 

β  is the propagation con-
stant of this CL line of concentrated elements. But from 
the theory of transmission lines [13], we know that iβ, 
relates to the line immittances by i ZYβ = . The pre-
sent case, in which ( )1 iZ Cω= −  and ( )1 iY ω= − L , 

Thus, the dispersion relation of the CL line satisfies 
the conditions for excitation of backward wave, whose 
phase velocity is negative as illustrated in Figure 3. In 
the frequency range 0 2ω ω>  for the lossless line (blue 
curves), β is purely real, representing propagation with-
out attenuation in the system; when 0 2ω ω< , β is 
imaginary, indicating attenuation without energy dissipa-
tion. It is interesting to notice that the underlying features 
of the propagation curve for the CL line, with the low- 
frequency branch bending downwards, have been ex-
perimentally observed in left-handed transmission lines 
yielding strong negative refraction index as large as −700 
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at gigahertz frequencies [14]. 

4. Results 

The following results refer to signals which propagate in 
the periodic LC and CL lines driven by a purely sinusoi-
dal signal with 1-V amplitude. 

Figure 4 shows the time variation of signals propa-
gating in a low loss  CL line 
of twenty sections with L = 1 μH, C = 1 μF and being 
excited by a signal of 250 kHz. Black, red, green and 
blue curves correspond to the nodes #0, #1, #3 and #5, 
where the signals are calculated. Note that the blue signal 
(node #5) reaches the positive peak (  before 
the other signals at the preceding positions {0, 1 and 3} 
closer to the exciting source. This is the phenomenon of 
phase advance in a CL line, and clearly apparent by the 
peak position at 3 μs in the blue curve, before the other 
signals, which only reach their respective peaks after 3.5 
μs. Similar situation is displayed in Figure 5 showing the 
time variation of signals propagating in a lossy line CL 

s LC CL  and excited by a signal of 200 
kHz. We note that the signals distort themselves early in 
time (t < 2 μs) so as to occur a pulse sequence of de-
creasing order {5, 3, 1, 0} at a time later to 8 μs, when all 
signals turn out to follow sinusoidal variation. In Figure 
5, the time difference between the crests of signals #5 
and #0, t0 = 11.21 µs and t5 = 7.94 µs, namely, ∆t = −3.27 
µs, relates to the phase factor through 

( 0.001 s LC CLr r r= = = Ω

3 μst ≅

) Ω

)

)

( 0.05r r r= = =

( )t nβ ωΔ = , 
where n is the number of sections between two given 
nodes. From Figure 3, at 0 200 159 1.26ω ω ==  one 
reads π 0.26β = − ; then substituting n = 5 and f = 200 
kHz (driving signal frequency) into ( )π 2t f nβΔ =     
gives 3.25 µs, in excellent agreement with the time dif-
ference ∆t = −3.27 µs directly measured from Figure 5. 
 

 

Figure 4. Voltage signals at nodes 0, 1, 3, and 5 in a low-loss,  
twenty-section CL line (rs = rLC = rCL = 0.001 Ω, L = 1 μH, C 
= 1 μF, resonance frequency f0 = 159.0 kHz) driven by a 
sinusoidal signal of 250 kHz. 

Figure 6 shows the time variation of signals propa-
gating in a low-loss  LC line 
with twenty sections, with immittances L = 1 μH, C = 1 
μF and excited by a sinusoidal signal of 50 kHz. Black, 
red, green and blue curves correspond to the nodes #0, #1, 
#3 and #5. It appears that the phase velocity is positive, 
and the phase delay in the low-loss LC line is clearly 
indicated by the relative position of the peaks, where the 
blue signal, for example, reaches a peak in the first 10 μs 
after the signals 0, 1 and 3 have reached their respective 
peaks. In a lossy LC line  ex-
cited by a 20 kHz signal (Figure 7) it is noted that the 
same blue pulse (node #5) has the smallest amplitude in 
the sequence of pulses {0, 1, 3, 5}. 

( )0.001 s LC CLr r r= = = Ω

0.05s LC CLr r r= = =( ) Ω

5. Conclusions 

A system of time-varying ordinary differential equations  

 

 

Figure 5. Voltage signals at nodes 0, 1, 3, and 5 in a lossy 
CL line of twenty sections (rs = rL = rC = 0.05 Ω, L = 1 μH, C 
= 1 μF, f0 = 159.0) driven by a 200 kHz sinusoidal signal. 
 

 

Figure 6. Voltage signals at nodes 0, 1, 3, and 5 in a low-loss 
LC line excited by a sinusoidal signal of 50 kHz. 
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Figure 7. Voltage signals at nodes 0, 1, 3, and 5 in a LC 
lossy line excited by a sinusoidal signal of 20 kHz. 
 
for lumped-element transmission lines has been derived 
and solved with given initial conditions for the distributions 
of charge of the capacitors and the fluxes through the in-
ductors. 

We have investigated propagation phenomena in trans- 
mission lines consisting of LC and CL cells. By taking the 
inductor current and the charge stored in the capacitor as 
state variables, a system of first order equations has been 
derived for each topology of time (LC and CL) and nu-
merically solved using the Mathematica software [15]. 
Considering both low-loss and lossy lines, in which iden-
tical inductors and capacitors are repeated periodically in 
each section, we have examined the transient and satura-
tion processes which occur in the signals when excited 
by a sinusoidal source, thus clearly demonstrating the 
phase advance of signals that propagate in the CL line.  

Arising from the periodicity of the lumped elements, a 
lossless CL line exhibits a sharp cutoff frequency at 

{ }Re πβ = −  which originates a low-frequency band 
gap. Loss effects, however, make the gap disappear, such 
that the propagation curve turns out to be continuous and 
the bandwidth is enlarged, but at the expenses of high 
losses. On a complementary way, loss effects on LC lines 
decrease the passband, as demonstrated by the propaga-
tion/attenuation diagram in which energy dissipation 
starts to become significant for frequencies below the 
critical frequency  of the lossless LC line. 0

Finally we note that certain application of transmission 
lines demand a large number of cells, such as soliton 
excitation in nonlinear transmission lines typically re-
quiring 500 cells, which may constitute a cumbersome 
task the drawing and wiring of 500 LC sections in 
SPICE-type circuit simulators [16]. On the other hand, a 
very large number of LC cells and their variant topolo-
gies are easily dealt with the mathematical formulation 
embodied in the system of differential equations. 

2cω ω=
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LC line: equation for the ending section Appendix 

We present in this appendix the equations implemented in 
the Mathematica software to the solution of differential 
equations that describe the temporal behavior and propa- 
gation of voltage and current signals in the LC (right- 
handed) and CL (left-handed) periodic lines. 

LC line: equation for the starting section 
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CL line: recursive functions for current and charge 

LC line: equation for the intermediate section 
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CL line: general equations for currents and charges  
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The initial conditions used are  and  
; notice that the circuit elements are indexed to 

any values rL, rC, rs, Lk, Ck in each section k. 
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