
adfa, p. 1, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Architectural Model for Generating User Interfaces
Based on Class Metadata

Luiz Azevedo, Clovis Fernandes, Eduardo Guerra

Aeronautical Institute of Technology, Praça Marechal Eduardo Gomes, 50
Vila das Acacias, CEP 12.228-900 – São José dos Campos – SP, Brazil

{ luizfva, guerraem}@gmail.com
clovistf@uol.com.br

Abstract. Source code duplication is the origin of several problems in a
software development project. Even been aware of this situation, application
developers tend to ignore them, once it takes a lot of time and effort for dupli-
cated pieces of code to be found and eliminated. To address this issue, the pre-
sent work presents a new model for source code generation for user interface
development. The generation process happens at runtime, each time a page is
requested, uses the resulting content of the request processing and a set of tem-
plates and is based on class metadata. As result, application developers have
new tool to avoid inconsistencies that can be originated by code duplication.

Keywords: user interface, source code generator, metadata, framework, incon-
sistency, software architecture.

1 Introduction

Source code duplication is an evil we all must fight. There are times when we feel
we don’t have a choice, the application environment seems to require duplication, or
we simply don’t realize we are duplicating information [1] and that can negatively
affect the software development in many ways.

Code duplication results in increased code size and complexity, making program
maintenance more difficult. Even if programmers could find and edit each copy of a
piece of code, it is impossible to ensure that all the changes were made consistently –
that the common regions are identical and the differences are retained – without man-
ually comparing each clone’s body, word-by-word, and hoping that no important
details were missed [2].

Whatever the reason, there are ways to avoid replicating source code. Source code
generation is a well-known tool to prevent a piece of information to be spread out to
several places of an application [1,3].

Structures in multiple languages can be built from a common metadata representa-
tion using a simple code generator each time the software is built [1]. Particularly,
when dealing with User Interfaces (UI), another approach would be to use a single
source of metadata in order to generate the source code at runtime.

The purpose of this paper is to present the model for source code generation for us-
er interface development. It is divided in the following manner: Section 2 introduces
inconsistencies in user interfaces, Section 3 presents the categories of source code
generators, Section 4 introduces the proposed model, Section 5 presents a framework
created as a proof of concept, Section 6 reports the validation of this work and Section
7 presents the conclusions.

2 Inconsistency in User Interfaces

At a survey conducted in early 1990s, Myers and Rosson [4] found that up to 48%
of software application source code is devoted to the user interface portion. Though
there are no recent studies to verify whether this relation stays the same, a considera-
ble part of the software development time is still dedicated to the user interface devel-
opment. On that occasion, interviewees reported that achieving consistency was one
of the most common faced problems when developing a user interface, especially
when there are multiple developers involved [4].

The lack of consistency might be a symptom of potential source code duplication
but, when it comes to user interfaces, it is rarely treated as such. Focusing on a web
application, three different kinds of inconsistencies, involving user interfaces, were
identified.

Inconsistencies between HTML code and application code

When listing the good habits of a pragmatic programmer, Hunt and Thomas [1]
highlight the Don’t Repeat Yourself (DRY) principle as: Every piece of knowledge
must have a single, unambiguous, authoritative representation within a system.

While developing a user interface, a common, yet bad, practice is to explicitly ex-
press in it every piece of information about the content that will be presented to the
final user. By doing so, the DRY principle is been violated, i.e. not only the Stu-
dent class knows that a student has a name, but every page that presents infor-
mation about a student also does. Thereby, when it comes the time a student’s name is
no longer stored in a single field, instead it must be stored by the student’s first-name
and last-name, all those pages that displayed the student name will have to be
changed. If, by any chance, at least one page is not updated, an inconsistent state aris-
es. This kind of inconsistency is usually found in applications that separate user inter-
face code from application logic, like MVC (Model-View-Controller) applications.

This is the simplest kind of inconsistency. The support provided by integrated de-
velopment environments (IDE) usually helps to avoid, or at least helps to identify this
kind of inconsistency. When they don’t, the first time someone navigates into an in-
consistent page, an error message will be printed out.

Inconsistencies in the way a content type is presented

Sometimes, it is desirable that a type of information always be presented the same
way (consistently) to the final user. For example, a java.util.Calendar object
usually holds more information than the user would want to see, thus it is customary
to format its date in a way the user could read its information and the date formatting
pattern should be the same throughout the whole application.

By violating that pattern, the application usability may be compromised. Besides, it
is evidence that the formatting code is been duplicated among the pages of the appli-
cation.

Behavioral inconsistencies among different user interfaces

When a graphical element has some events associated with it, like an animation or
client-side content validation, it should trigger these events in the same manner, inde-
pendently from what content it holds or by what page it is been used.

Suppose that all mandatory fields for text entry have a minimum length to be con-
sidered valid. For example, in a form for adding students an input value like “a” for
the student name field should not be considered valid. If this validation is not per-
formed in a mandatory text field, inconsistent data can be informed and persisted to
the application.

3 Source code generation

Source code generators are great tools to reduce the odds that fragments of source
code be copied to several places. Source code generation is about writing programs
that write programs [3]. According to Herrington [3] the benefits of the use of a
source code generator are:

• Quality: large volumes of manually written source code tend to have in-
consistent quality, because new and better approaches are found as the
application is been developed, however, by several reasons, they cannot
be applied to every portion of the application that has already been devel-
oped.

• Consistency: The source code that is built by a generator is consistent in
the design decisions and conventions. That is, one can’t be certain that de-
sign decisions and source code conventions will be respected when the
source code is written manually. However, when a generator acts as an in-
terface between two distinct contexts of an application, like between a da-
tabase and the data access layer or between the model layer and the
presentation layer, consistency is always preserved, for one context is
built in according to the other.

• Abstraction: There is the possibility of creating new templates to translate
the logic into other languages, onto other platforms, or programming par-
adigms.

• Productivity: The work time of a software engineer is highly valuable and
should not be wasted with repetitive and predictable activities. The gener-
ator can treat those repetitive activities, and then the engineer can apply
his efforts to a more noble activity.

Source code generators are classified into two categories as for its influence over
the built code: active and passive [3]. Passive generators build source code that can be
freely changed, that is, developers have full access to the content created and when
necessary, it can be directly modified. Hence, when the generation is performed
again, all the modifications made manually will be lost [5]. This type of code genera-
tors is usually used by IDEs for creating new files with a starting content.

Active source code generators, on the other hand, are responsible by the code gen-
erated. It is important to highlight that active code generators use templates as basis of
the creation process [6]. As the need to modify the code arises, they are made to those
templates, instead of to the resulting code, and the changes are reflected on the creat-
ed content. Active source code generators can be used along with the build process or
at runtime as the proposed model.

There is also a classification as for the output produced. Herrington [3] describes
them as follows:

• Code Munger Generator: this kind of generator takes an input file, usually
source code, and searches it for patterns. When it finds those patterns, it
processes their contents and generates a set of one or more output files. A
well-known example of a Code Munger Generator is the JavaDoc docu-
mentation generated from a set of java source files.

• Inline-code Expansion Generator: simplifies the source code by adding a
specialized syntax, in witch you specify the requirements for the code to
be generated. This syntax is parsed by the generator, which then imple-
ments code based on requirements. The source code is “expanded” based
on some kind of markup, which will be replaced by the generated code.
The output file will have all the original source code, except for the spe-
cial markup that is going to be replaced by the built content.

• Mixed-code Generator: The generator reads the input file and modifies it,
overwriting the original file with the changes made. As the Inline-code
Expansion Generators, the Mixed-code Generators also use special
markups that indicate where the generated code will be placed. The main
difference is that the Mixed-code Generators keep the original markup
that will denote where the generate code was placed.

• Partial-class Generator: The generator uses an abstract definition of the
source code to be created as input. Instead of filtering, or replacing code
fragments, this generator takes a description of the code to be created and
builds a full set of implementation code.

• Tier Generator: The generator builds all the code for one layer or section
of an application. The most common example is the constructor of a data-
base access layer of a web/client-server application.

4 The Proposed Model

This research proposes a new model of source code generators for user interface
development, called MAGIU – Architectural Model for Generating User Interfaces
(in Portuguese, Modelo Arquitetural de Geração de Interfaces com o Usuário), it can
be implemented in any object oriented language and guarantees the consistency of an
application user interfaces. The proposed model suits the characteristics of an active,
inline-code expansion generator [3,6,5], its parameterization and generations are
made at runtime.

It has been chosen to use an active source code paradigm by the possibility to cus-
tomize the resulting content by acting directly over the generation process, once the
templates used by the generator are passive to changes. On the other hand, the inline-
code expansion paradigm was chosen so that the special markup that indicates where
the generated content will be placed is deleted and will not impact the resulting con-
tent.

For the sake of simplicity, from now on, all the given examples will be for an
HTML code generator and the server-side language used will be Java.

The generated content corresponds to the HTML code necessary to present or to
edit server-side objects’ state, and it will be placed at an HTML page each time the
user requests it. Those server side objects are usually the resulting content of a calcu-
lation or a query to the database, whose metadata are read and then used to build
HTML code. The resulting HTML content corresponds to an editor (an HTML form)
or a display for server-side object.

The proposed model has three main sources of information in the process of build-
ing the user interface:

• Metadata: the generator reads metadata information from an instance ob-
ject. This object contains the primary source of metadata consumed by the
generator besides the information that will be show to the user or edited
by him.

• Templates: define the organization of the HTML code, which will com-
pose the generated user interface. Each template is directly related to a
specific type of data (as templates for texts, for boolean data, for numbers
or user defined data). Application developers can create new templates as
well as edit the existing ones in order to change the resulting content.

• Metadata Repository: stores the metadata read from various sources, ex-
cept for that from the instance object given to the generator. The metadata
repository avoids unnecessary metadata readings [7].

Figure 1 presents the main elements of the proposed model.

Figure 1 - Proposed Model for generation of source code for user interfaces.

The metadata reading and metadata processing are two of the most important stag-
es of the generation. Characteristics of the generated content vary from application to
application and what determine these variations are the different forms that the data is
structured. By processing the metadata, the generator is capable of obtaining any in-
formation regarding the structure of all necessary data to conclude the generation.

MAGIU model supports the generation of HTML code for two different contexts:
content edition and content display. For this, the generator must have access to an
object whose content will be displayed or edited. Usually, this object is an instance of
an application entity. In practice, any type of object that stores information can be
used as a source of knowledge for generating a page.

The model enables the addition of new metadata sources, what makes it possible
for the generator to read metadata from any source, even those not foreseen by the
moment of its creation.

When an object is provided, the generator searches for a user-defined template re-
lated to the type of that object. The lack of a customized template implies in the use of
the default template for that corresponding type. If no template is found so far, the
generator will search for the template of the immediate supertype of that object. The
search continues until it reaches the Object class. The implementation should pro-
vide default templates for primitive types (such as integers, booleans, floating num-
bers etc.), text types (string), collection of objects (like the Java ja-
va.util.Collection interface and arrays) and the Object class.

It is also possible that one type of data can represent more than one type of infor-
mation, i.e. a string object can represent a plain text, a password, an email address, a
URL, an image path, and so on. Therefore, the application developer should be able to

add a special markup to add semantics to those types and create a new template for
each of these semantic types.

The generator iterates over the fields of the given object repeating the generation
processing for each of them. This divide and conquer approach is repeated until a type
of interest is found. On the context of this work, we define a type of interest, as been
an atomic type of data. Once divided, a type of interest has no meaningful information
to the final user. A common example is a java.util.Calendar object, whose
fields might not bring useful information besides the actual date that the final user
would be interested in. In Java, some examples of types of interest are ja-
va.lang.String, java.util.Calendar, java.lang.Number, ja-
va.lang.Character and any of their subclasses plus the java primitive types.

Generating the source code for a type of interest is the base case of this recursive
algorithm. Every type of interest has a correspondent template for display’s genera-
tions and other for editor’s generations. Once the HTML code is built, the generation
process goes up a level.

Figure 2 and Figure 3 illustrate the recursive generation algorithm defined by the
proposed model.

Figure 2 - Generation Algorithm (1/2)

Generation Algorithm

Initial State
Wait State
Processing State
Completed State

To illustrate the generation algorithm let’s take a look at this
symbolic example. The root of this tree is the element to

which we want to generate the HTML content to.

STEP 1

The generation process begins. All the metadata
from the processed objet must be gathered,
including that of its fields. This information is

hereafter handed over to the template engine,
responsible to create the HTML content.

But to generate sorce code based on a complex object is... well,
complex. To compose the HTML content for an object, the

generator has to know the HTML content of all its fields. The
generation proceeds to one of the object’s fields.

The creation of the root object’s source
code will not continue until all of its

fields’ HTML content has been
generated. Recursively, the generation

process proceeds to the first of its fields.
But, the source code generation is still not trivial. The

processed object, as the root element, is composed of
complex fields.

STEP 2

Figure 3 - Generation Algorithm (2/2)

The MAGIU model helps to avoid the three kinds of inconsistencies introduced
previously:

1. Inconsistencies between HTML code and application code: the HTML
code is always generated from the application code;

2. Inconsistencies in the way the content is presented: a given type of appli-
cation code is always presented the same way, that is, their generation
process and their template are the same;

3. Behavioral inconsistencies among different user interfaces: the event calls
originated by a kind of HTML element is consistent throughout the appli-
cation, once that element is always generated from the same template.

However, the developers have full access to the templates, so they can introduce
inconsistencies into them. It has been chosen to make customization possible, so that
developers could achieve the desired user interface, but as a drawback, it is not possi-
ble to check whether the templates are consistent with each other.

5 Development Framework

A Java development framework was built, as a proof of concept, to show the real
capacity of the proposed model of source code generation. According to Foote and

The generator reaches a situation that
it knows how to generate the source
code for all the fields of the current
object, that is, all its fields’ types are

types of interest.

STEP 3

Generating source code for objects
that are of type of interest is trivial.

The code is created and the recursion
goes up a level.

STEP 4

The HTML generation for an object
whose fields HTML code is known is

also possible.

STEP 5

When the HTML content for all the
objects in the tree, apart that of the

root element, has been built, the
generator is ready to create the
source code relative to the root

object.

STEP 6

Johnson [8], a framework is a set of classes that embodies an abstract design for solu-
tions to a family of related problems. It consists of a structure that can be reused as a
whole on the development of a new system [9].

All interaction with the framework is done through its façade. The client applica-
tions make calls to two methods, one to generate an editor for given a content and one
to generate a display for a given content.

MAGIU public interface
public class MAGIU {
 public String editorFor(Object model) {…}
 public String displayFor(Object model) {…}
}

The metadata read is encapsulated in a Metadata Container object [7] and given to

a template engine. The templates have some small regions that will be filled with
information provided in that metadata container.

The following example illustrates a template used to edit the content of an object of
type Object. The Object template is taken as the default template for complex ob-
jects. The Properties collections represents the collection of metadata gathered from
all the instance variables that object has, accessible through the Metadata Container
objects. This collection will be iterated, generating HTML content for every field.

Example of template for edit an Object’s content.
<div id="${DisplayName}">
 <#list Properties as prop>
 <p>
 <label class="inFieldLabel"
 for="${prop.nameAttribute}">
 ${prop.displayName}
 </label>
 ${prop.html}
 </p>
 </#list>
</div>

Accessing the prop variable, the template engine can print every information hold

by the related Metadata Container, they are:
• nameAttribute: metadata usually used by templates of types of inter-

est. It is used in the “name” attribute of some HTML tags. This way, the
HTML form submitted back to the server can be easily bound to an ob-
ject.

• displayName: a display name that the current object/field has in a
form or in a display page.

• templateName: the name of a template, used to specify the usage of a
specific template.

• value: a reference to the value of the current object/field. When used in
a template, its toString method is called.

• type: a reference to the class of the current object/field.

• html: the generated HTML content for the current field.
A common example of usage of a user interface generator is to build CRUD pages.

Figure 4 illustrates a form for adding new users generated by the framework.

Figure 4 - Example of New User Form, created by a MAGIU generator

The following example shows an example of how a MAGIU generator can be used
in a JSP page. The user object is attached in the request by the servlet and handled
to the generator. The editFor() call will then return a String object containing the
resulting HTML content.

Example of the usage of the generator in a JSP page.
<%@page import="atarefado.view.Html"%>
<%@ page language="java" contentType="text/html; charset=ISO-8859-1"
 pageEncoding="ISO-8859-1"%>
<%@ taglib prefix="my" tagdir="/WEB-INF/tags"%>
<%@ taglib prefix="html" uri="/WEB-INF/functions.tld"%>
<jsp:useBean id="user"
 type="atarefado.model.presentationmodel.UserPM" scope="request" />
<my:base title="NewUser">
 <form action="NewUser" method="post">
 <div class="centralized">
 <h1>New User</h1>
 ${html:editorFor(user)}
 <input type="submit" value="Register"
 class="goldButton" />
 </div>
 </form>
</my:base>

The UserPM class declaration defines the metadata processed while the form pre-

sented in Figure 4 was generated.

UserPM class declaration.
public class UserPM {
 @DisplayName("User Name")
 private String name;
 private String login;
 @TemplateName("Password")
 private String password;
 @TemplateName("Password")
 @DisplayName("Confirmation")
 private String passwordConfirmation;
}

The templates used in this generation are the Object Template, the String Template

and the Password Template.

String Template
<input id="${model.nameAttribute}" type="text" class="text"
 name="${model.nameAttribute}">
 ${model.html}
</input>

Password Template
<input id="${model.nameAttribute}" type="password" class="text"
 name="${model.nameAttribute}">
 ${model.html}
</input>

6 Experiment

Bosh [9] highlights that tests must be made to verify whether the framework pro-
vides the wanted functionality and to assess its usability. Hence, an experimental
study was elaborated to verify if the MAGIU model, implemented in the presented
framework, really removes the potential inconsistencies in the user interfaces of an
application, as proposed.

The study was conducted with undergraduate students of the Aeronautical Institute
of Technology (ITA – Instituto Tecnológico de Aeronáutica). The main goal of the
experiment was to verify which kind of inconsistency could be inserted in applica-
tions with and without the use of the proposed model. In this context, the students
were responsible to perform a modification over a sample application in order to try
to intentionally cause inconsistencies.

The artifacts used on the study were written in Java and, even though some partici-
pants had a limited experience in developing software, all of them had solid
knowledge in Java and were capable to read and comprehend the application logic.
Most of the participants had only had developed software at class and their knowledge
was strictly academic. Besides, a few students had already had some previous experi-
ence involving source code generators. To those students that participated in the stud-
ies, the experiment activities came to replace one of the discipline’s practical evalua-

tions. Figure 5 illustrates the participants’ previous experience with software devel-
opment.

Figure 5 - Participants previous experience with software development

The experiment was divided in three phases: training, implementation and analysis.
In the first one, the students went through a training process at which they were pre-
sented to the types of source code inconsistencies, its causes, and the usage of the
MAGIU generator framework. Additionally, they were also exposed to two versions
of an sample application called Atarefado, where one used the generator and the other
didn’t.

In the second phase, the students were divided into ten groups of two or three peo-
ple and each group chose a piece functionality to be implemented. Their activities
consisted of trying to cause one or more inconsistency cases, stressing the MAGIU
generator in every imaginable way. Initially, just the version of the Atarefado sample
application that didn’t use the generator should be used (V1). If an inconsistency was
found, the group should try to cause that same inconsistency to the version of Atare-
fado, supported by the generator (V2), and report the results. At the end of the exper-
iment, the students answered a survey questionnaire to register their experience.

In the third phase, the reported information, the questionnaire answers and the
group’s resulting implementation were qualitatively analyzed in the attempt to identi-
fy evidences that proved that the generator eliminated the provoked inconsistencies.
The main advantage of performing a qualitative analysis is that it demands that the
researcher unveil the problem complexity instead of abstracting it [10]. Hence, it is
possible to analyze the elements responsible for causing the inconsistencies found by
the experiment participants.

Six groups reported inconsistencies in version V1 along the implementation of the
chosen piece of functionality as ilustrated in Figure 6. Three of them reported that
inconsistencies were also found in version V2 of the Atarefado sample application.
After the analysis was completed, it was found that all reported inconsistencies were
directly inserted on the templates. Those inconsistencies emerged when two or more
templates were inconsistent with each other, the CSS classes or JavaScript functions
used by one template were not necessarily used by the other.

Thus, inconsistencies found on the templates were replicated to all the pages that
used them. However, to solve it, the application developer needs only to correct the
inconsistent template, therefore modifying only one file. It is noteworthy that the
reported of inconsistency can only happen within the templates created by the appli-

cation developers. By using a consistent set of templates, the generator will always
create inconsistency free content.

Figure 6 - Reported inconsistencies

7 Conclusions

At the beginning of this research, it was defined that consistency between two ob-
jects is the fulfillment of all the rules/relations that bind them. By breaking one of
those rules, an inconsistent state is characterized. When the value of a metadata is
changed, some rule is also changing, and the generator will always follow that. With
no support of a generator like MAGIU generators, it is the application developers’
responsibility to know and follow those rules. On the other hand, when a MAGIU
generator is adopted, the rules can be abstracted once they will be followed by the
generator.

After concluding the analysis of the experiment data, we feel that our hypothesis
gained strength. The usage of a MAGIU generator can help the application developers
to avoid source code duplication and, consequently, avoid inconsistencies among the
pages of an application.

References

1. Andrew Hunt and David Thomas, The Pragmatic Programmer: From Journeyman to
Master.: Addison Wesley, 1999.

2. Michael Toomim, Andrew Begel, and Susan L. Graham, "Managing Duplicated Code
with Linked Editing," in Visual Languages and Human Centric Computing, 2004 IEEE
Symposium, Rome, 2004, pp. 173-180.

3. Jack Herrington, Code Generation in Action. Greenwich, CT, USA: Manning
Publications Co, 2003.

4. B. Myers and M. Rosson, "Survey on User Interface Programming. In Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems," ACM Press, pp.
195-202, 1992.

5. Michael Montero. (2009, Maio) The Input Ouput Toolkit - IOTK. [Online].
http://iotkfw.com/2009/05/21/active-passive-code-generation/

6. Autumn Wilkins and Cody Smith. (2011, Julho) CodeSmith Generator 6.x. [Online].
http://docs.codesmithtools.com/display/Generator/Active+vs.+Passive+Generation

7. Eduardo Guerra, "A Conceptual Model for Metadata-based Frameworks," Aeronautics
Institute of Technology, São José dos Campos, 2010.

8. Brian Foote and Ralph Johnson, "Designing Reusable Classes," Journal of Object-
Oriented Programming, vol. I e II, pp. 22-35, Julho 1988.

9. Jan Bosh, Peter Molin, Michael Mattson, and PerOlof Bengtsson, "Object-Oriented
Framework - Problems and Experiences," Department of Computer Science and
Business Administration, University of Karlskrona, Ronneby, Sweeden, 1997.

10. Forrest Shull, Janice Singer, and Dag Sjøberg, Guide to Advanced Empirical Software
Engineering. New York: Springer-Verlag, 2007.

11. Peri Tarr, Harold Ossher, William Harrison, and Stanley M. Sutton, "N degrees of
separation: multi-dimensional separation of concerns," in Proceedings of the 21st
international conference on Software engineering, New York, NY, 1999.

12. Walter L Hürsch and Cristina Videira Lopes, "Separation of Concerns," February
1995.

