
A Qualitative and Quantitative Analysis on Metadata-
based Frameworks Usage

Eduardo Guerra1, Clovis Fernandes1

1 Aeronautical Institute of Technology (ITA) - Praça Marechal Eduardo Gomes, 50
CEP 12.228-900 - São José dos Campos – SP, Brazil

guerraem@gmail.com, clovistf@uol.com.br

Abstract. The usage of metadata-based frameworks are becoming popular for
some kinds of software, such as web and enterprise applications. They use
domain-specific metadata, usually defined as annotations or in XML
documents, to adapt its behavior to each application class. Despite of their
increasingly usage, there are not a study that evaluated the consequences of
their usage to the application. The present work presents the result of an
experiment which aimed to compare the development of similar applications
created: (a) without frameworks; (b) with a traditional framework; (c) with a
metadata-based framework. As a result, it uses metrics and a qualitative
evaluation to assess the benefits and drawbacks in the use of this kind of
framework.

Keywords: framework, metadata, metric, experiment, software design,
software architecture.

1 Introduction

A framework is a set of classes that supports reuses at larger granularity. It defines an
object-oriented abstract design for a particular kind of application which does not
enable only source code reuse, but also design reuse [1]. Frameworks can enable
functionality extension by providing abstract methods in its classes which should be
implemented with application-specific behavior. Other alternative is to provide
methods to configure instances for which part of the functionality is delegated. This
instances can be application-specific or from framework's built-in classes [2]. In the
present work, the frameworks that use those approaches based on inheritance or
composition to enable its extension are called Traditional Frameworks.

The framework structures has evolved and recent ones make use of introspection
[3] [4] to access at runtime the application classes metadata, like their superclasses,
methods and attributes. As a result, it eliminates the need for the application classes to
be coupled with the framework abstract classes and interfaces. The framework can,
for instance, search in the class structure for the right method to invoke. The use of
this technique provides more flexibility to the application, since the framework reads
dynamically the classes structure allowing them to evolve more easily [5].

For some frameworks, however, once they need a domain-specific or application-
specific metadata to customize their behavior, the information found in the class
definition is not enough [6]. This kind of information can be represented and defined
in code annotations [7], external sources, like XML files and databases, or implicitly
by using naming conventions [8] [9]. In the present work this kind of framework is
named Metadata-based Framework, which can be defined as the one that process their
logic based on the metadata from the classes whose instances they are working with
[10].

Before this study, not much information about the benefits of developing and using
metadata-based frameworks were found in the literacture, but some development
communities are increasingly adopting them as standards. Consistent with that, there
are many recent frameworks developed and APIs defined using this approach, such as
Hibernate [11] , EJB 3 [12], Struts 2 [13] and JAXB [14].

The main goal of this study is to evaluate the benefits and drawbacks in the usage
of metadata-based framework. In order to do that, an experiment was conducted
aiming to compare the uses of traditional and metadata-based frameworks to create
the same functionality. The experiment carried out during an undergraduate course of
advanced topics in object-orientation. The same application was developed by the
students using three different approaches: (a) without frameworks; (b) with a
framework that do not use metadata; (c) with a metadata-based framework. Students
also answered a questionnaire to register their impressions on the experience.

Metrics and visualization techniques were applied to the source code of the tree
applications in order to evaluate the design of each one. Issues like coupling, amount
of code and complexity were considered in the analysis. Other more subjective issues
like the facility to use the framework, easiness to evolve the application and the
development time were addressed in the questionnaire and in observations during the
implementation. The evaluation resulted in a set of consequences, both positives and
negatives, concerning the use of metadata-based frameworks.

2 Metadata-based Frameworks

Metadata is an overloaded term in computer science and can be interpreted differently
according to the context. In the context of object-oriented programming, metadata is
information about the program structure itself such as classes, methods and attributes.
A class, for example, has intrinsic metadata like its name, its superclass, its interfaces,
its methods and its attributes. In metadata-based frameworks, the developer also must
define some additional application-specific or domain-specific metadata.

The metadata consumed by the framework can be defined in different ways [9].
One althernative is to define them in external sources, like XML files and databases.
Another possibility that is becoming popular in the software community is the use of
code annotations, that is supported by some programming languages like Java [7] and
C# [15]. Using this technique the developer can add custom metadata elements
directly into the class source code. The use of code annotations is also called attribute-
oriented programing [6] [16].

Metadata-based frameworks can be defined as frameworks that process their logic
based on the metadata of the classes whose instances they are working with [10]. The
use of metadata changes the way frameworks are build and how they are used by
software developers. In metadata-based frameworks there are some variable points in
the framework processing which are determined by class metadata. Reflective
algorithms in some cases cannot be applied due to more specific variations for some
classes. In this context, metadata can be used to configure specific behaviors when the
framework is working with that class.

From developer's perspective in the use of this kind of framework, there is a
stronger interaction with metadata configuration than with method invocation or class
specialization. That makes the number of method invocations in framework classes
smaller and localized.

The following are examples of how metadata-based frameworks and APIs can be
used in different contexts: Hibernate [11] is a framework for object-relational
mapping; SwingBean [19] is a framework that generates forms and tables in Java
Swing based on class structure and metadata; EJB 3 [12] is an standard Java EE API
for enterprise development that uses metadata to configure concerns such as access
control and transaction management; and JColtrane [20] is a XML parsing framework
based on SAX which uses annotations for conditions to define when handler's
methods should be invoked.

3 Experiment Description

One of the great difficulties to evaluate the benefits and drawbacks of the use of a
metadata-based framework is the nonexistence of comparison basis. In other words, it
is hard to find two frameworks with the same purpose, one build using traditional
methods and other based on metadata, that can both be used for comparison. Four
different scenarios abstracted from existent frameworks were used as reference for the
case studies in this experiment.

The experiment main goal can be defined as: “To create traditional and metadata-
based frameworks for the same purpose and applications with the same behavior
using them, aiming to generate a comparison basis and identify the benefits and
drawbacks of the metadata-based approach.”

According to [21] classification, a Controlled Experimentation Method is used in
the experiment, that can also be classified as a Synthetic Environment Experiment,
since it is performed on an academic setting and simulates the creation of a piece of
functionality in an application. Based on the taxonomy presented by [22], the
experiment is designed to present cause-effect results, to be performed by novices and
on an in-vitro environment. A similar approach to evaluate implementation
approaches can be found in [23] and [24].

The following are the requirements that were considered in the elaboration of the
experiment to reach its objectives: (a) two frameworks for the same purpose must be
created using the traditional and the metadata-based approach; (b) solutions with the
same external specified behavior must be developed using both frameworks and also
without their use; (c) solutions with the same specified behavior to be compared must

not be developed by the same persons; (d) neither the frameworks nor the solutions
that implements the specified behavior must be developed by the present work's
authors; (e) the development time of the solutions must be measured; (f) the design of
the solutions must be assessed; and (g) the participants development experience to
create the solutions must be assessed.

The experiment took place in Advanced Topics in Object Orientation discipline,
which is an optional class in the fifth year of the Computer Engineering graduation
coarse in the Aeronautical Institute of Technology. It was executed in the second
semester of 2009, when twelve students attended the course. They were divided in
four groups of tree students, one for each scenario.

3.1 Experiment Stages

The development of the frameworks and the implementations using them, were
divided in five distinct stages. The class was divided in four groups of tree students,
each responsible for the development of the first solution and both versions of the
framework for one scenario. The other solutions using the frameworks were
developed by other distinct groups. Fig. 1 illustrates graphically the experiment stages
and the software products generated in each one.

In Stage 1, students received a specification with the solution requirements which
must be implemented by them. This solution could be composed by more than one
class and the specification also defined how an external class should interact with
them to use its functionality. Based on this defined protocol, the students also had to
create an automated test suite to verify if the solution implements the specified
requirements. They must not use frameworks and they should measure the
development time for the solution's and test suite's implementation. This stage was
executed at the student's home, and was carried on the beginning of the coarse when
only testing techniques and basic concepts had been taught.

1

Tests

Solution 1 1 Framework 1

FW1

2

Tests

Solution 2

FW1
1 Framework 2

FW2

3

Tests

Solution 3

FW2

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5

Fig. 1. Experiment stages representation.

In Stage 2, the same group should develop a framework using traditional and
reflection techniques in order to make easier the creation of similar solutions of the
one developed in Stage 1. The framework scope and functionalities were specified in

a document and used by the students as a reference. They also should provide
documentation for the framework usage. The only restriction was that the framework
must not use annotations or information defined externally. Nothing was said about
reflection and code conventions in the specification, but their use were allowed. This
stage was executed at their home as well, and happened at the middle of the coarse
when reflection and object-oriented design techniques had already been taught.

 In Stage 3, the group that worked in a different scenario should implement a
solution similar to the one developed on Stage 1, but using the framework developed
in Stage 2. The students received the same requirements specification used in Stage 1
and the framework documentation developed in Stage 2 to be read just before the
implementation beginning. Students also received a project configured with: the tests;
the framework in the classpath; and empty classes needed for the test to compile. The
solution was considered implemented when the test suite executed successfully. This
stage was executed in the class lab and the implementation time was measured by the
present work's author.

In Stage 4, the same group that implemented stages 1 and 2 should develop a
metadata-based framework for the same purpose of the one developed in Stage 2. The
framework scope, functionalities and the role of metadata were specified in a
document and used by the students as a reference. They also should provide
documentation for the framework usage as they did in Stage 2. This stage was
executed at their home, and was accomplish at the end of the coarse when annotations
and techniques to develop frameworks with metadata had already been taught.

In Stage 5, a group that has not been worked already in the scenario should
implement a solution similar to the ones developed in stages 1 and 3, but using the
framework developed in Stage 4. The conditions were similar to Stage 3. This stage
was executed in the class lab and the implementation time was measured by the
present work's author.

The solutions developed by the students are not complete applications, but pieces
of code that could potentially be a part of an architectural layer. They focused on a
single concern, which is the domain aimed by the frameworks to be developed.
Therefore, the specifications define simple problems to be implemented nevertheless
with a lot of constraints to simulate the requirements of a real application.

The groups were free to use any strategy learned in the classes for the first
framework implementation, since it fulfills the objective to make easier the
development of that kind of solution. For the second framework, the specification
defined more clearly for which purpose the metadata would be used and students did
not have much freedom on their choices.

Each case study aimed to use respectively the following scenarios for the metadata
usage: (a) mapping between command-line parameters and a class that represents
them; (b) validation of method parameters and constraints; (c) stock market event
handling; and (d) automatic generation of an HTML form.. Each scenario focus on a
different architectural pattern documented for this kind of framework [25]. This
scenario diversity is important to enable the assess of not only the general
characteristics, but also the specific ones from each distinct metadata usage.

After the implementation, the design of each solution was measured and evaluated
using the metrics and the visualization techniques, such as polymetric views [26] and
class blueprints [27]. The development experience was assessed through time

measurements, the present work's author's observations and the students answers to a
questionnaire whose questions are presented in the next subsection.

3.2 Questionnaire

The students answered a questionnaire at the end of Stage 5 to evaluate their
experience and impressions on the development of each solution.

The students filled a table answering for each solution development the following
three questions: (1) how easy was the development of the application's source code;
(2) how easy was the use of the framework; and (3) how easy would be to change the
code to add new features. Each question could be answered as one of the following
alternatives: (a) very easy; (b) easy; (c) average; (d) hard; and (e) very hard. The
students also wrote a free text about their experience to justify his answers, which was
also considered in the analysis.

To compare quantitatively the characteristics of each solution, the answers were
turned into numbers using numeric scale from one to five respectively from very easy
to very hard. This quantitative analysis was complemented with a qualitative one,
using the author's observations and the answers to the open question.

3.3 Limitations

Despite the fact that the experiment achieved all the requirements, it still has some
inherent limitations that can influence the implementations, which are used for the
measurements and the conclusions. The following are the identified limitations that
can have influence in the implementations: (a) the students learned about object-
oriented design and frameworks from the beginning to the end of the Advanced
Topics in Object Orientation discipline, which might have some influence in the
source code quality; (b) the students did not have a wide experience in framework
development and the difficulties in its use could have been from problems in the
framework; (c) the solutions developed are not entire applications and the creation of
only a functionality piece might not simulate the usage of a framework in a real
system; and (d) the requirements in the specifications were not taken from real
applications and were created to match the metadata usage scenarios, which might not
be a precise simulation of a real development.

To deal with the two first limitations, student's source code was examined carefully
by the present work's author, who also observed the implementations. Whenever
mistakes that can compromise the analysis were found, they were considered and
referenced in the analysis in order to not invalidate the conclusions.

The two last limitations are related to the specifications and requirements used for
each scenario. The requirements are based on concerns that might appear in real
applications. The clear specification of how a class should interact with the solution
simulates the framework usage encapsulation in order to minimize the effect of the
implementation to cover only a piece of functionality.

The time measurements and the questionnaires can also suffer variations due to the
following experiment characteristics: (a) the solution developed is a small piece of

software and any unexpected fact, such as a bug, can increase greatly the relative
development time; (b) students might have unconsciously evaluated the difficulty to
develop each solution in comparison to the solutions of the other case studies
developed; and (c) student could have more difficulty in software programming then
others and this could interfer in the comparison between their answers.

To avoid the influence of those factors in the conclusions, the analysis of solutions
developed was not strictly quantitative, but also qualitative. The development of
stages 3 and 5 were observed by the present work's author, who took notes about
students difficulties and other events that could interfere with the results. The students
also had an opportunity in the questionnaire to write their impressions about the
development and justify their answers. This information was considered to the
conclusions.

The solution was developed in class by the group, which helped to eliminate the
influence of personal difficulties in programming, since the students helped each
other to finalize the implementation. It was also important in the equality of each
group's development capacity, to make the comparison of development time
measurements more reliable.

4 Experiment Experience

The objective of this section is to present the questionnaire answers and the
development time measurements. These data are used in the analysis performed in the
next sections.Table 1 presents a summary of the the questionnaire answers.

Table 1. Questionnaire answers and development time

Scenario Questions Without
Frameworks

Traditional
Framework

Metadata-based
Framework

A

Difficulty to Develop 5 11 10
Difficulty to Use - 8 11
Difficulty to Modify 9 10 6
Development Time 180 min 97 min 120 min

B

Difficulty to Develop 12 9 6
Difficulty to Use - 12 6
Difficulty to Modify 12 11 5
Development Time 300 min 144 min 43 min

C

Difficulty to Develop 8 9 7
Difficulty to Use - 9 12
Difficulty to Modify 7 12 9
Development Time 150 min 71 min 83 min

D

Difficulty to Develop 10 7 6
Difficulty to Use - 9 6
Difficulty to Modify 14 8 9
Development Time 360 min 128 min 68 min

The first column presents the number of the case study group with the development
time for each case study in each phase. The questions are presented in a simplified
way, but they represent the three questions described in the section 3.2. The three
students answers in each experiment stage were summed and are presented at the
table. It is important to highlight that for the implementation without frameworks, the

time was measured by the students, but in the other phases, were measured by the
present work's author.

5 Case Studies Metrics and Analysis

This section presents the metrics taken from the solutions and an analysis from the
results of each case study. The metrics were based on the one from the overview
pyramid [28], which is a metrics-based mean that both describe and characterize the
structure of an object-oriented system by quantifying its complexity, coupling and
usage of inheritance. The measured values for each version of each scenario are
presented on Table 2.

Table 2. Metrics values for the three versions of each scenario. The metrics are Number of
Classes (NOC), Number of Methods (NOM), Cyclomatic Number (CYCLO), Lines of Code
(LOC), Number of Operation Calls (CALLS) and Number of Called Classes (FANOUT).

Scenario a Scenario b Scenario c Scenario d

1 2 3 1 2 3 1 2 3 1 2 3

Simple Metrics
NOC 4 4 4 5 5 5 14 11 14 2 2 2
NOM 26 29 23 18 16 16 58 48 71 35 21 21
LOC 163 172 119 82 61 28 271 204 249 287 108 76
CYCLO 41 48 30 26 9 9 80 65 83 74 21 21
CALLS 27 29 17 23 16 2 43 20 14 44 5 1
FANOUT 16 24 13 21 5 1 30 17 11 15 2 1
Computed Proportions
NOM/NOC 6.5 7.25 5.75 3.6 3.2 3.2 4.14 4.36 5.07 17.5 10.5 10.5
LOC/NOM 6.26 5.93 5.17 4.55 3.81 1.75 4.67 4.25 3.50 8.2 5.14 3.61
CYCLO/LOC 0.25 0.27 0.25 0.31 0.14 0.32 0.29 0.31 0.33 0.25 0.19 0.27
CALLS/NOM 1.03 1.0 0.73 1.27 1. 0.12 0.74 0.41 0.19 1.25 0.23 0.04
FANOUT/CALLS 0.59 0.82 0.76 0.91 0.31 0.5 0.69 0.85 0.78 0.34 0.4 1.0

The analysis takes in consideration the metrics, a qualitative code analysis,
questionnaire answers, students observations, development time and the author's
observations during the development. The following subsections present a detailed
analysis of each case study.

5.1 Scenario 1 - Command-line Parameters Mapping

Analyzing the absolute number of lines of code on Table 2, it is possible to verify that
the lines of code increased a little comparing the solution without frameworks with
the solution using the traditional framework. The solution using the metadata-based
framework has the lower number of lines of code, even if seven additional ones used
for annotations were considered.

The Intrinsic Operation Complexity (CYCLO/LOC) do not change much among
the implementations, but considering the reduction in the lines of code, it is not the
best metric to evaluate the solution's complexity. Since the quantity of methods

remains more stable, the complexity per method is probably a better indicator.
Calculating the Cyclomatic Complexity per Method of each solution, it is possible to
observe that the solution with metadata has less value.

According to the development times presented in Table 1, the solution using the
traditional framework was the fastest to implement followed by the one using the
metadata-based framework. From the students notes and from author's observations,
the following factors slowed down the development in Stage 5: (a) the framework was
hard to understand and did not support the mapping of most of the situations; (b) the
exceptions did not point out where were the problems; and (c) some framework
exceptions had the same name of application exceptions in the test, which was a fact
that took some time for the students to perceive.

According to Table 1, the solution without framework was considered easier to
develop but the students recognized that it demanded a lot of manual work. Despite
the second solution had been the fastest to implement, the students had the feeling that
the framework did not help and increased the development complexity. The metadata-
based framework was considered even more complex to understand and with a
development difficulty similar to the second solution, but it was considered easier to
maintain.

From the first to the second solution, the development time was reduced despite the
framework being considered hard to understand and the solution having more lines of
code and cyclomatic complexity. This fact can be assigned to the guidance that the
framework usage provided for the developers to design the solution's structure.

In the metadata-based framework, the lean and less complex source code did not
offset difficulty to understand and use the framework. The framework made difficult
the development since the mapping functionalities did not support the application
needs. In the case study, for seven properties to be mapped, only tree could be
mapped using only the metadata.

Observing the implementation, it is possible to notice that using the metadata-
based framework, the implementation of some mapping methods was not necessary
since the metadata was enough for the framework to execute the translation. This
reduction of effort can be perceived in the metrics by the reduction of complexity and
lines of code, but it was not enough to reduce the development time. Following this
logic, if the framework supported more mapping functionalities only through
metadata configuration, those benefits probably would be higher, consequently
reducing the development time.

Another difficulty highlighted in the student's comments was the unclear messages
in the exceptions threw by the framework. Those messages did not pointed out what
was wrong in the metadata configuration, which hindered in the debug, taking a
considerable piece of the development time away.

5.2 Scenario 2 - Method Invocation Constraints

Following the implementation's lines of code evolution on Table 2, it is possible to
notice that using the frameworks they got reduced. Even considering the lines of code
with annotations, that sums 21, the metadata-based framework is the shortest solution.

The complexity was reduced using both frameworks, since they work with
configurations and eliminate the implementation of rules of the application code.

In all the solutions, a proxy was used to implement the validation. In the first
solution the proxy was implemented manually and used a lot of operation calls to
implement the required validations in each method, which explains the coupling
metrics. The number of calls in the solution that used the traditional framework were
concentrated in the method that configured the proxy, which invoke a great number of
operations on the framework classes. In the solution that uses annotations, only one
call to a framework class was needed since it configured the validations based on
annotations on the interface. Due to those annotations, this interface had with the
framework a semantic coupling, which is not addressed by the metrics.

A large difference in the development time between the implementations can be
found in Table 1. According to the students, the code creation was hard-working in
the Stage 1 due to a lot of specifications for each method validation that did not allow
code reuse. The creation of the method context validation was pointed by the students
as specifically hard.

In the second solution, developed with the traditional framework, the students
pointed the framework out as one great difficulty. This fact can be verified in Table 1.
The lack of documentation for some features made necessary the consultation of the
framework authors during the development. The framework also did not implemented
correctly the functionalities for method context validation, and consequently five unit
tests were unable to execute successfully. The solution was not flexible to allow an
extension to workaround this problem.

The students considered the implementation using the metadata-based framework
easier and indeed the development time was significantly smaller. According to the
group, the annotation names made them intuitive to use. They also felt that the code
became a little polluted with the annotations, but they recognize that it was worth for
the other benefits.

The development strategies used in Stage 1 and in Stage 3 were completely
different. In the first solution the proxy implemented the validation rules in each
method, using conditional rules to identify the invalid invocations, which explains its
higher cyclomatic complexity. In the second solution, the proxy was created by the
framework and configured by the application invoking methods to set the constraints
in the proxy class. This configuration did not demand conditional logic, which
reduced the solution complexity.

The solution implementation using the traditional framework had some problems
that impacted in the development time, such as the framework lack of documentation
and missing functionalities. The present work's author, which followed the
implementation, judges that without those problems, the team probably would not had
reached closer to the last development time.

The coupling had a remarkable difference between the second solution and the one
that uses metadata. The source code that created the proxy using the traditional
framework were completely dependent on that application class. Contrasting to this,
in the third solution this source code was independent from the application class. For
instance, in an application whose method invocations should be validated, using the
metadata-based framework it would be possible to reuse the code for proxy creation

for all classes. Notwithstanding, that would not be true using the traditional
framework.

5.3 Scenario 3 - Stock Exchange Events

The size and complexity metrics do not change much among the implementations
according to Table 2. The solution with the traditional framework has the lowest lines
of code number, but amounts of unused code were found in the third solution. It was a
student's attempt to implement the event representation that was not cleaned when
another alternative was chosen.

The coupling is a characteristic that observing the metrics clearly changes among
the implementations. The use of interfaces provided by the framework reduced the
coupling between the event generator and event handlers. The metadata usage
reduced even more this coupling, making easier changes in both sides. Fig. 2 presents
the blueprint complexity [27] for the three developed solutions. The dark blue edges,
that represent method invocations among classes, are clearly reduced following the
implementations.

Fig. 2. Class Blueprint from the three implementations.

 It was expected that the complexity was reduced using the metadata-based
framework, due to rules configuration using annotations. The students that
implemented that solution misuse the framework and did not use the annotations to
receive only the events with the desired property values.

Observing Table 1, the solution with the traditional framework was the one with
the littlest development time. According to the student's observations, the framework

guided the implementation using its interfaces in the application classes and the
solution programming was simple.

In opposition to this, the implementation using the metadata-based framework was
interfered by many problems that occurred. One of the problems was related to the
environment configuration. The metadata-based framework version used an external
library to create the dynamic proxies and that library was not included in the path of
the project template used by the students. The exception thrown by the framework
was not clear about this and it took some time for the students to perceive that a
library was missing. The time used to copy the files and configure the project was not
considered in the development time.

According to the framework documentation, for attributes in event classes, wrapper
classes must be used instead of primitive types. For instance, Integer should be used
instead of int. The students that implemented the solution did not attend to this and
used primitive types. The framework did not throw an error and simply did not
populate that attributes in the event. The group expended a long time finding out what
was wrong.

The consequences of this fact can be observed in Table 1. For the metadata-based
framework, the framework usage was considered more difficult than the application
development itself. For the second implementation no exceptional fact was observed
or reported by students, and even so they felt some difficulty in it. The
implementation itself was not complicated, so the solution without frameworks,
despite taking more time, was considered easy to create.

In this case study, the use of metadata did not reduce the amount of source code
which should be developed. The reduction in complexity could not be evaluated since
the framework functionalities that could impact on this were not used on the solution.
Contrasting this, the reduction on the coupling between the event generator and its
handler could be clearly observed by the metrics and the views.

The problems that occurred showed that using a metadata-based framework the
developers lose even more control over the processing flow. Unexpected situations
that happen inside the framework classes, even due an application class
misconfiguration, are hard to be identified and understood by the developers. It
highlights the importance of a good error handling strategy implemented by the
framework, to validate the class structure and metadata.

5.4 Scenario 4 – HTML Form Generator

According to Table 2, the size metrics reduced through the implementations,
especially from the solution without framework to the solution using a traditional
framework. If the 24 lines of code with annotations were considered in the last
solution, the difference comparing to the second implementation is not so significant.

The solution without frameworks used many methods defined in the same class to
generate the HTML form. The inFusion tool, used to generate the overview pyramid,
pointed this class out as a God Class and found two Feature Envy inside it [28].

Using the traditional framework, the functionality implementation was reduced to
one method which invokes the framework many times to configure the form specific
characteristics. The last solution was similar, but those configurations are in

annotations on the target class, reducing even more the method size. This also
explains the reduction in the coupling metrics.

For this case study, the development time using metadata-based frameworks was
almost the half of the time to create the solution using the traditional framework, as
presented in Fig. 2. Without using the frameworks, the development time was really
longer, which confirms that developing a graphical interface can be a time consuming
task.

The only exceptional situation observed was in the use of the traditional
framework, when the students did not observe in the documentation that the class
attributes should be public and then they took some time to find out what was wrong.
By the observations during the development, without that setback the development
time would not be largely reduced.

According to the students evaluation, presented in Table II, the solution without
framework was hard to create and could be considered even harder to modify. A
student noted that the solution was not flexible and impossible to be reused to
generate another form. Comparing the answers in the table, it is possible to affirm that
the implementations had a technical draw in difficulty to develop and to change. The
major difference was in the framework understanding, which was reinforced by some
student's observations. According to them, the traditional framework use
configurations in imperative code which is not much intuitive. The opposite was
stated for the metadata-based framework.

This case study illustrates how the solutions with similar size metrics, considering
the annotation's lines of code, could have a great difference in the development time.
This was the only case study that did not have great issues that could interfere in the
development time in the implementation with both frameworks. The reason can be
found in the following student's observations: it is more intuitive to define metadata
declaratively close to the code element which it is referring to, than using imperative
code and referencing the code elements using strings.

The coupling in this case study also reduced through the implementations. Using
the metadata-based framework, the same method could be used to generate the HTML
forms for different classes since the difference between them can be found in their
defined metadata. Contrarily, using the traditional framework different methods must
be used for different classes, since the configurations should be made inside the
methods.

6 General Analysis

A first conclusion that can be draw based on the metrics and development time is that
the frameworks, traditional or metadata-based, bring benefits in the application design
and can increase the productivity in those scenarios. However, its usage is inadvisable
when it does not fulfill the application's needs and it is not flexible enough to be
adapted to them. The frameworks provide an easy way to reuse functionality among
features of the same application and even among different ones. Besides, they guide
the development providing a ready-to-use design structure to the application, which

can reduce the development time even when the lines of code are almost the same
comparing to a solution without their use.

A metadata-based framework can potentially provide a solution in which the
developer can add metadata to the existent classes intuitively increasing productivity,
as it happened in the groups 2 and 4. In contrast to this, as evidenced by groups 1 and
3, the use of a framework based on metadata do not guaranties a high productivity.
Consistent with this, in group 1 the solution that used the metadata-based framework
took more time even having less lines of code.

According to [29], the lack of an explicit control flow in applications which uses
frameworks can difficult the developer's understanding of it. In frameworks that use
the metadata-based approach, where the adaptations are based on the class metadata,
this problem is even worst since the flow of control is even more implicit. Because of
that, it is difficult to find errors related to their usage in applications. For instance,
metadata configuration errors, such as a missing property or a misspelled string, are
pretty hard to detect. This difficulty to find errors can be a bottleneck in the team
productivity. Those facts can be observed in the implementations with the metadata-
based framework in groups 1 and 3.

This evidence makes the error handling and metadata validation important features
for a metadata-based framework. The error or warning messages should be designed
to help the developer to find a misconfiguration. Those frameworks were not
automatically good just for using metadata. Best practices valid for every piece of
software, such as good naming and clear documentation, are also important in this
context. Specific best practices, such as those presented in [10], are also important to
make the framework more flexible enabling it to be adapted to the application needs.

An interesting fact that happened in the traditional framework's implementations
was that three of them used a programmatic approach to set additional information
about the application classes into the framework, in other words, metadata. In Group
1, the application class had to implement an interface which had methods to return
additional metadata about the class. In groups 2 and 4, the framework main class
provides methods to set information referencing the application class elements
directly in the framework. If inexperienced students in framework development had
chosen a solution based on metadata definition even without its knowledge, that might
evidence that defining metadata in those scenarios is an intuitive approach.

Despite all other facts, a constant characteristic of the solutions that used the
metadata-based frameworks is the coupling reduction, which can be confirmed in all
case studies. The use of this kind of framework decouples the application classes from
framework since the need for them to implement interfaces or extend a superclass
from the framework is eliminated. Its use also decouples the client class that invokes
the framework functionalities from the application class that is processed from the
framework. However, it is important to notice that it still exist an indirectly or
semantic coupling between the framework metadata definition and the application
class, which was not addressed by the metrics [30]. The use of an external metadata
strategy or domain annotations mapped to framework annotations [31] can help to
reduce this semantic coupling.

Other benefits also can be achieved by the use of metadata-based frameworks,
which depends on the framework's functionality and domain. When the framework
manages to encapsulate features that must be implemented by the application using a

traditional approach, it probably would reduce the complexity and the lines of code
number in the application where it is applied.

7 Conclusion

This paper presents an evaluation of metadata-based frameworks usage based on an
experiment. The experiment created a comparison basis for applications without
frameworks, using traditional frameworks and using metadata-based frameworks for
distinct scenarios. As a result, it was possible to assess benefits and drawbacks in the
use of this approach. The analysis used object-oriented metrics, questionnaire
answers, observations, source code analysis and development time measurements to
reach the conclusions.

Further studies can explore the use of metadata-based frameworks with more
features for more complete applications. In these scenarios, it would be possible to
explore other issues, such as the reuse provided among different functionalities. Other
future works could aim on solutions to common needs of this kind of framework, such
as exception handling on metadata reading.

References

1. Johnson, R., Foote, B.: Designing reusable classes. In Journal Of Object-Oriented
Programming. v.1, n. 2, Jun./Jul., 22-35 (1988)

2. Pree, W.: Hot-spot-driven development. In Building application frameworks: object-oriented
foundations of frameworks design. New York: Wiley, Chap. 16, 379-393 (1999)

3. Doucet, F., Shukla, S., Gupta, R.: Introspection in system-level language frameworks: meta-
level vs. Integrated. In Source Design, Automation, and Test in Europe, 382-387 (2003)

4. Forman, I., Forman, N.: Java reflection in action. Greenwich, Manning Publications (2005)
5. Foote, B., Yoder, J.: Evolution, architecture, and metamorphosis, In Pattern Languages of

Program Design 2. Boston: Addison-Wesley Longman, Chap. 13, 295-314 (1996)
6. Schwarz, D.: Peeking inside the box: attribute-oriented programming with Java 1.5,

http://missingmanuals.com/pub/a/onjava/2004/06/30/insidebox1.html
(2004)

7. JSR 175: a metadata facility for the java programming language,
http://www.jcp.org/en/jsr/detail?id=175 (2003)

8. Chen, N.: Convention over configuration,
http://softwareengineering.vazexqi.com/files/pattern.html (2006)

9. Fernandes, C., Ribeiro, D., Guerra, E., Nakao, E.: XML, Annotations and Database: a
Comparative Study of Metadata Definition Strategies for Frameworks. In: XML: Aplicações
e Tecnologias Associadas, Vila do Conde, Portugal (2010)

10. Guerra, E., Souza, J., Fernandes, C.: A pattern language for metadata-based frameworks, In
Conference on Pattern Languages of Programs, 16, Chicago (2009)

11. Bauer, C., King, G.: Java persistence with hibernate. Greenwich, Manning Publ. (2006)
12. JSR 220: Enterprise JavaBeans 3.0, http://www.jcp.org/en/jsr/detail?id=220

(2006)
13. Brown, D., Davis, C., Stanlick, S.: Struts 2 in action. Greenwich, Manning Publ. (2008)

14. JSR 222: Java Architecture for XML Binding (JAXB) 2.0,
http://jcp.org/en/jsr/detail?id=222 (2006)

15. Miller, J.: Common language infrastructure annotated standard. Boston, Addison-Wesley
(2003)

16. Rouvoy, R., Pessemier, N., Pawlak, R., Merle, P.: Using attribute-oriented programming to
leverage fractal-based developments. In International ECOOP Workshop on Fractal
Component Model, 5, Nantes (2006)

17. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley (1994)

18. O'Brien, L.: Design patterns 15 years later: an interview with Erich Gamma, Richard Helm
and Ralph Johnson. http://www.informit.com/articles/article.aspx?
p=1404056 (2009)

19. Swingbean: aplicações Swing a Jato!, http://swingbean.sourceforge.net
20. Nucitelli, R., Guerra, E., Fernandes, C.: Parsing XML Documents in Java Using

Annotations. In XML: Aplicações e Tecnologias Associadas, Vila do Conde, Portugal
(2010)

21. Zelkowitz, M., Wallace, D.: Experimental validation in software engineering. In
Information and Software Technology, V. 39, 735-743 (1997)

22. Basili, V.: The role of experimentation in software engineering: past, current and future. In
Proceedings of the 18th international conference on Software engineering. IEEE Computer
Society, Washington, DC, USA, 442-449 (1996)

23. Soares, S., Borba, P.: Towards progressive and non-progressive implementation approaches
evaluation, In Proceedings of Experimental Software Engineering Latin American
Workshop (2004)

24. Noël, R.: Evaluating Design Approaches in Extreme Programming. In Proceedings of
Experimental Software Engineering Latin American Workshop (2005)

25. Guerra, E., Fernandes, C., Silveira, F.: Architectural Patterns for Metadata-based
Frameworks Usage. In Proceedings of Conference on Pattern Languages of Programs, 17,
Reno (2010)

26. Lanza, M., Ducasse, S.: Polymetric views: a lightweight visual approach to reverse
engineering. In IEEE Transactions on Software Engineering. V.29, n.9, 782-795 (2003)

27. Ducasse, S., Lanza, M.: The Class Blueprint: visually supporting the understanding of
classes export. In IEEE Transactions on Software Engineering. V.31, n. 1., 75-90 (2005)

28. Lanza, M., Marinesco, R.: Object-Oriented Metrics in Practice - Using Software Metrics to
Characterize, Evaluate, and Improve the Design of Object-Oriented Systems. Springer
(2006)

29. Fayad, M., Schmidt, D., Johnson, R.: Application frameworks. In Building Application
Frameworks: Object-oriented Foundations of Frameworks Design. New York: Wiley, Chap
1, 3-27 (1999)

30. Guerra, E., Silveira, F., Fernandes, C.: Questioning traditional metrics for applications
which uses metadata-based frameworks. In Workshop on Assessment of Contemporary
Modularization Techniques. V. 3, Orlando (2009)

31. Perillo, J., Guerra, E., Silva, J., Silveira, F., Fernandes, C.: Metadata Modularization Using
Domain Annotations. In Workshop on Assessment of Contemporary Modularization
Techniques. V. 3, Orlando (2009)

