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In a recent study �Rempel and Chian, Phys. Rev. Lett. 98, 014101 �2007��, it has been shown that nonat-
tracting chaotic sets �chaotic saddles� are responsible for intermittency in the regularized long-wave equation
that undergoes a transition to spatiotemporal chaos �STC� via quasiperiodicity and temporal chaos. In the
present paper, it is demonstrated that a similar mechanism is present in the damped Kuramoto-Sivashinsky
equation. Prior to the onset of STC, a spatiotemporally chaotic saddle coexists with a spatially regular attractor.
After the transition to STC, the chaotic saddle merges with the attractor, generating intermittent bursts of STC
that dominate the post-transition dynamics.
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I. INTRODUCTION

Chaotic dynamics can appear in the form of asymptotic or
transient chaos. In dissipative systems, asymptotic chaos re-
fers to the dynamics on chaotic attractors, and it is a well-
known fact that transient chaos is caused by the presence of
nonattracting chaotic sets known as chaotic saddles in the
phase space �1–4�. Random initial conditions usually spend
some time in the vicinity of a chaotic saddle before escaping
toward an attractor. When a system displays transient chaos
and multistability, i.e., coexistence of multiple attractors, a
chaotic saddle lies in the fractal basin boundaries �5,6�.

If two or more chaotic saddles are embedded in a chaotic
attractor, trajectories on the attractor can visit the neighbor-
hood of each saddle, experiencing different chaotic tran-
sients. The recurrence of these transient states generates
intermittency �7�. Intermittency is a striking feature in non-
linear systems and has attracted much attention from both the
chaos and turbulence communities. Different types of inter-
mittency have been reported in chaotic systems, such as
Pomeau-Manneville intermittency �alternation between cha-
otic and periodic behavior� �8�, crisis-induced intermittency
�alternation between two different chaotic behaviors� �9�, and
spatiotemporal intermittency �space-time mixture of fluctuat-
ing spatially ordered domains and “turbulent” patches�
�10,11�. In hydrodynamic turbulence, intermittency consists
of episodic switching of regions of strong vorticity and re-
gions of relatively quiet fluid flow �12,13�.

A series of works have been published on the role of
chaotic saddles in intermittency modeled by partial differen-
tial equations in regimes of temporal chaos �TC� �4,14,15�
and spatiotemporal chaos �STC� �16�. In the former case, the
system is temporally chaotic and spatially regular, whereas

the latter case consists of both temporal chaos and spatial
disorder. In �16� chaotic saddles were shown to be respon-
sible for a type of intermittency involving random switchings
between periods of temporal and spatiotemporal chaos �TC-
STC intermittency� in a nonlinear regularized long-wave
model in a small spatial domain. The aim of this paper is to
show that the same mechanism can be found in the damped
Kuramoto-Sivashinsky �KS� equation, a widely studied
reaction-diffusion equation. In a large spatial domain, it is
shown that the spatial complexity and temporal chaoticity of
the attractor in the STC regime are basically determined by a
spatiotemporally chaotic saddle present in the phase space
for all values of the control parameter used in this study. In
particular, we investigate the variation of spatial dynamics
before and after transition to intermittent spatiotemporal
chaos.

In Sec. II the damped Kuramoto-Sivashinsky equation
and its numerical solution are presented. Section III de-
scribes the transitions from a periodic to a quasiperiodic,
then to a temporally chaotic, and finally to a spatiotempo-
rally chaotic attractor. Section IV discusses the role of cha-
otic saddles in spatiotemporally chaotic transients and TC-
STC intermittency. The conclusions are given in Sec. V,
where we suggest that a crisis is responsible for the transition
to STC.

II. THE KURAMOTO-SIVASHINSKY EQUATION

The Kuramoto-Sivashinsky equation was named after its
derivation by Kuramoto and Tsuzuki �17� as a phase equation
for the complex amplitude of the Ginzburg-Landau equation,
and by Sivashinsky �18� as a model of hydrodynamical in-
stability in laminar flame fronts. It had been previously de-
rived to describe the nonlinear saturation of the collisional
trapped-ion mode, a drift wave associated with the oscilla-
tion of plasma particles trapped in magnetic wells created by
the inhomogeneous magnetic field of a tokamak, where pe-
riodic boundary conditions are specified �19,20�.
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The damped Kuramoto-Sivashinsky equation is given by
�10,21�

�tu = �� − �1 + �xx�2�u − u�xu , �1�

where �� �0,1� is a damping parameter. The mathematical
properties and nonlinear dynamics of the KS equation for
�=1 have been extensively studied �4,10,14,15,22–26�. Most
works focus on the transition from order to temporal chaos,
where spatial regularity is maintained and the KS equation
resembles a low-dimensional dynamical system. Transition
to spatiotemporal chaos as a function of the damping param-
eter � was studied by Chaté and Manneville �10� for rigid
boundary conditions. They observed the presence of transient
spatiotemporally disordered states for � below a critical
value �c, where the system undergoes transition from lamel-
lar to spatiotemporal chaos. For � above �c, intermittent spa-
tiotemporal chaos is observed.

The present paper investigates the transition to spatiotem-
poral chaos in the damped ���1� KS equation with periodic
boundary conditions u�x , t�=u�x+L , t�. Following Elder
et al. �21�, we take L=536. The transition point to spatiotem-
poral chaos seems to be independent of the system size for
large enough L �21,27�.

Equation �1� is solved using a standard forward-time,
centered-space finite-difference code, where the first-order
forward-difference approximation is used for the time de-
rivative and the second-order centered difference is em-
ployed for the spatial derivatives. A spatial grid with
N=1024 points is adopted ��x�� /6�, with a time step
�t=0.01. The numerical scheme is stable for this choice of
spatial and time steps, and one can study the late-time dy-
namics of Eq. �1�. In order to simplify visualization of the
outputs, a Poincaré map is defined by u�5�x , t�=3 and
�tu�5�x , t��0. This choice of map is arbitrary and is found
after observing the flow of Eq. �1� in the phase space. Imple-
mentation of the Poincaré map is performed using the Hénon
method �28�.

III. TRANSITION TO SPATIOTEMPORAL CHAOS

By applying small increments to the control parameter �
while following a particular set of initial conditions, the evo-
lution of attractors of Eq. �1� can be investigated. Figure 1
shows the contour plots for the spatiotemporal patterns at
four values of the damping parameter �. The first three pat-
terns �Figs. 1�a�–1�c�� represent spatially regular regimes,
whereas the fourth one �Fig. 1�d�� represents a spatially ir-
regular regime. The pattern in Fig. 1�a� represents the spa-
tiotemporal evolution of a trajectory on a periodic attractor
of Eq. �1� at �=0.625. In Fig. 1�b� the periodic attractor
evolves into a quasiperiodic attractor at �=0.632; Fig. 1�c�
displays a temporally chaotic attractor at �=0.635; and Fig.
1�d� displays a spatiotemporally chaotic attractor at
�=0.637. The temporal dynamics can be characterized by the
maximum Lyapunov exponent �max, computed by the Ben-
netin method �29,30�. For periodic and quasiperiodic re-
gimes, �max=0, whereas at �=0.635 the attractor is weakly
chaotic, with �max�0.007. At �=0.637 the Lyapunov expo-
nent suddenly jumps to �max�0.2, indicating a transition to

strong chaos within the STC regime, as can be seen in Fig.
2�a�, which shows the convergence of �max for different sets
�the Lyapunov exponent of the spatiotemporally chaotic
saddle, STCS, in Fig. 2 is discussed in the next section�.

The time-averaged power spectrum is a valuable tool to
characterize the degree of spatial disorder. Figure 3 plots two
time-averaged power spectra ��û�2�, where û is the discrete
spatial Fourier transform of u�x , t�:
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FIG. 1. Contour plots for the spatiotemporal patterns of Eq. �1�
for �a� periodic attractor at �=0.625; �b� quasiperiodic attractor at
�=0.632; �c� temporally chaotic attractor at �=0.635; �d� spa-
tiotemporally chaotic attractor at �=0.637.

FIG. 2. �a� Maximum Lyapunov exponents �max for the attrac-
tors �black lines QPA, TCA, and STCA� and for the chaotic saddle
�gray line, STCS� for different values of �; �b� variation of the
time-averaged spectral entropy �S�t with � for the attracting sets �A,
triangles� and for the spatiotemporally chaotic saddle �STCS,
circles�.

REMPEL, CHIAN, AND MIRANDA PHYSICAL REVIEW E 76, 056217 �2007�

056217-2



û�k,t� = 	
j=0

N−1

u�j�x,t�e−
−1j�xk, �2�

where k=n2� /L, n=−N /2, . . . ,N /2. The position of the
peaks in Fig. 3 can be explained with the aid of the Fourier
transform of the linear part of Eq. �1� with respect to x,

�tû�k,t� = �� − �1 − k2�2�û�k,t� . �3�

Equation �3� exhibits a range of linearly unstable wave num-

bers for 
1−
��k�
1+
�, with kc=1 corresponding to
the wave number of the most rapidly growing linear mode.
Figure 3 shows the time-averaged power spectra at four val-
ues of �. All of them reveal a high peak close to kc. Natu-
rally, the peak is not exactly at kc due to nonlinear effects. In
Fig. 3�a�, the spectra at �=0.625 �periodic attractor, dotted
line� and �=0.632 �quasiperiodic attractor, solid line� reflect
the similarity between the ordered spatial patterns in these
regimes. Figure 3�b� displays the difference between the
spectra at �=0.635 �TC attractor, light line� and �=0.637
�STC attractor, dark line�. At �=0.637, the main peak is
much lower and broader, indicating that the spectral energy
has spread toward modes in nearby wave numbers. The en-
ergy spreading reflects an increase in spatial disorder, which
can be quantified by the spectral entropy �31–33�

S�t� = − 	
k=1

N

pk,t ln pk,t, �4�

where pk,t is the relative weight of mode k,

pk,t =
�û�k,t��2

	
k

�û�k,t��2
, �5�

and the convention pk,t ln pk,t=0 for pk,t=0 is used. The nor-
malization in Eq. �5� assures that pk,t� �0,1� and 	kpk,t=1.
Thus, if pk,t=1, for some k, then S�t�=0 �perfectly ordered
state�. The entropy is maximum when p�k , t�=1 /N, ∀ k
�random state with uniform distribution�, in which case it can
be shown that S�t�=ln N �34�. Since u�x , t� is a real function,
�û�−k , t��= �û�k , t�� and only half of the Fourier modes must
be taken into account. Then the maximum entropy is
S�t�=ln�512��6.24. Similar to what happens with the maxi-
mum Lyapunov exponent, the time-averaged spectral entropy
�S�t suddenly increases after the transition from temporal
chaos to the spatiotemporal chaos regime. For �=0.635,
�S�t�2.25, and for �=0.637, �S�t�4.36 �see Fig. 2�b��.

IV. TRANSIENT AND INTERMITTENT
SPATIOTEMPORAL CHAOS

In order to study intermittency in the STC regime, it is
crucial to understand the nature of transient spatiotemporal
chaos. For ��0.636, prior to the STC regime, the system
displays long periods of STC behavior before converging to
a spatially regular attractor. Figure 4�a� illustrates this phe-
nomenon at �=0.635. The time series for the peak height h
of the main peak of the power spectrum is given in terms of
the Poincaré cycles T, i.e., the number of crossings of the
flow with the Poincaré section. The time series exhibits high
variability and low mean amplitude up to T�15 000
�t�250 000�, after which h exhibits low variability and high
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FIG. 3. Time-averaged power spectra for �a� periodic attractor
��=0.625, dotted line� and quasiperiodic attractor ��=0.632, solid
line�; �b� temporally chaotic attractor ��=0.635, light line� and spa-
tiotemporally chaotic attractor ��=0.637, dark line�.
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mean amplitude. The first part of the time series corresponds
to a very long transient spatiotemporal chaos, which is a
feature typically shown by random initial conditions. It re-
mains to be verified whether or not this is a signature of
supertransient chaos �when the average lifetimes of chaotic
transients depend exponentially on the system size �3,35�� in
the damped Kuramoto-Sivashinsky equation. Figure 4�b�
shows the corresponding peak position kp, i.e., the wave
number corresponding to the maximum peak of the power
spectrum at a given time. As can be seen, kp is able to clearly
distinguish the TC and STC behaviors. During the STC tran-
sient, kp varies erratically, in accordance with the complex
spatiotemporal structures, where no single characteristic
wave number can be identified. Once the TC regime is
reached, kp becomes constant, kp=2�85 /L, and refers to the
characteristic wave number of the spatial pattern seen in Fig.
1�c�.

Right after the transition to STC at ��0.636, one finds
intermittency characterized by “random” switching between
periods of TC �lamellar� and STC �bursty� dynamics. Figure
5�a� displays an interval of intermittent time series at
�=0.636. Figure 5�b� shows the corresponding peak position
kp. During the TC periods, kp=2�85 /L, just as in the TC
regime of Fig. 4�b�. During the STC periods, kp varies errati-
cally. Note the similarity between the bursty periods in Fig.
5�a� and the transient in Fig. 4, as well as between the lamel-
lar periods in Fig. 5�a� and the final regime in Fig. 4. The
STC transient in Fig. 4 corresponds to the dynamics in the
neighborhood of a spatiotemporally chaotic saddle �STC
saddle�. The STC saddle can be found with the sprinkler
method �1,2�. In the sprinkler method, the chaotic saddle is
approximated by points from trajectories that follow long
transients before escaping from a predefined restraining re-
gion of the phase space. To find the STC saddle, a large set

of initial conditions is iterated by the Poincaré map and those
trajectories for which kp�2�85 /L for 100 consecutive itera-
tions are considered to be in the vicinity of the STC saddle.
For each of those trajectories, the first 30 and last 30 itera-
tions are discarded and only 40 points are plotted. This
choice of restraining “region” is due to the fact that when the
system converges to the TC regime kp=2�85 /L, as men-
tioned before.

Figure 6 depicts the two-dimensional Poincaré maps
(u�2, t� ,u�3, t�) of the attractors and chaotic saddles of the
KS equation for four different values of the control param-
eter � �the same values used in Fig. 1�. Since the KS equa-
tion exhibits multistability, the initial conditions were chosen
such that Fig. 6 shows the evolution of a single attractor. In
Figs. 6�a�–6�c�, the attractor evolves from periodic at
�=0.625 �cross, PA� to quasiperiodic at �=0.632 �black line,
QPA�, then to temporally chaotic at �=0.635 �black points,
TCA�. The gray points surrounding the attractors represent
the STC saddle, responsible for transient STC. At �=0.637,
Fig. 6�d� indicates that the attractor is suddenly enlarged af-
ter the transition to STC. It also shows that the STC saddle
becomes part of the STC attractor. In fact, by applying the
sprinkler method it is possible to find the STC saddle as a
subset of the attractor �gray points in Fig. 7�. Moreover, by
looking for trajectories where kp=2�85 /L for more than 100
consecutive iterations, one finds, embedded in the STC at-
tractor, a temporally chaotic saddle �TC saddle�, which is
plotted as black points in Fig. 7. Note that the TC saddle
occupies the region previously held by the TC attractor.
Since chaotic saddles are always responsible for transient
chaos, trajectories on the STC attractor can exhibit transient
spatiotemporal chaos whenever they are in the vicinity of the
STC saddle, or transient temporal chaos whenever they are
in the vicinity of the TC saddle. The recurrence of visits of a
trajectory to the vicinities of both chaotic saddles generates
the intermittency observed in Fig. 5. We emphasize that, due

0 10000 20000 30000 40000 50000 60000
0

1e+06

2e+06

3e+06

4e+06

0 10000 20000 30000 40000 50000 60000

0.4

0.8

1.2

1.6

Τ

h

k

(a)

(b)

Τ

p

h

T

10

30

40

0

206

6

6

6

1.6

1.2

0.4

0.8

200000 40000 60000

0 4000020000 60000

kp

T

FIG. 5. Intermittent spatiotemporal chaos observed at �=0.636.
�a� Variation of the maximum peak height h of the power spectrum
as a function of the Poincaré cycles T; �b� variation of the wave
number kp associated with the maximum peak as a function of T.

FIG. 6. Two-dimensional projections of the Poincaré points of
�a� the periodic attractor �PA, cross� and the spatiotemporally cha-
otic saddle �STCS, gray� at �=0.625; �b� the quasiperiodic attractor
�QPA, black� and STCS �gray� at �=0.632; �c� the temporally cha-
otic attractor �TCA, black� and STCS �gray� at �=0.635; �d� spa-
tiotemporally chaotic attractor �STCA� at �=0.637.
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to the long STC transients found close to the TCA-STCA
transition, it is very difficult to determine the precise transi-
tion point. We have considered �=0.636 as the transition
point based on simulations with time as large as t=106.

Figure 7 reveals that the spatiotemporally chaotic saddle
is robust to small changes in the control parameter �. Even
after abrupt changes in the structure of attractors, the STC
saddle is only slightly altered. After the transition to STC
attractor at ��0.636, the mean duration of lamellar periods
in the intermittent time series drops quickly as � increases.
Consequently, the bursty phases, ruled by the STC saddle,
dominate the dynamics on the STC attractor. Hence, the STC
saddle captures the essence of spatiotemporal chaos in the
Kuramoto-Sivashinsky equation. In quantitative terms, let us
compare the values of the two indicators of temporal and
spatial disorder previously mentioned in this work, the maxi-
mum Lyapunov exponent �max and the time-averaged spec-
tral entropy �S�t, respectively. Figure 2�a� shows the conver-
gence of �max as a function of time for QPA, TCA, and
STCA �black lines� as well as STCS �gray line�. Evidently,
the Lyapunov exponent of STCS at �=0.632, in the QP re-
gime, is almost the same as the exponent for STCA at �
=0.637. In Fig. 2�b�, �S�t is plotted as a function of � for both
attracting �triangles, A� and nonattracting �squares, STCS�
sets. It is clear that the spatial disorder of STCS is the same
as that of STCA.

The value of �S�t for the attractor in Fig. 2�b� apparently
grows linearly between r=0.635 and 0.637. In this range the
intermittent lamellar periods due to the TC saddle can be
observed in the time series. As r is increased, the average
duration of lamellar periods decreases and the STC saddle
begins to control most of the dynamics on the attractor. The
spectral entropy �S�t increases until it saturates at r=0.637,
when long lamellar periods can barely be observed in time
series. The decrease of the average duration of lamellar pe-
riods � as a function of the distance between � and �c
=0.636 follows a power law shown in Fig. 8. The dots rep-
resent values computed from long time series and the straight
line is a linear fit with slope ��−1.1.

V. CONCLUSIONS

The description of transient chaos and TC-STC intermit-
tency in terms of temporally and spatiotemporally chaotic
saddles was established for the damped Kuramoto-
Sivashinsky equation. The scenario described above suggests
that a crisis �9,26,36–38� is responsible for the transition to
STC in the damped KS equation. At the critical value of the
control parameter, a spatiotemporally chaotic saddle collides
with a temporally chaotic attractor and both chaotic sets are
merged into a wide spatiotemporally chaotic attractor. The
precrisis temporally chaotic attractor loses asymptotic stabil-
ity, being converted into a temporally chaotic saddle embed-
ded in the spatiotemporally chaotic attractor. The postcrisis
enlarged attractor exhibits TC-STC intermittency. This
mechanism for intermittency is akin to the coupling between
band and surrounding chaotic saddles described in Refs.
�7,39,40�, which generates crisis-induced intermittency in
low-dimensional dynamical systems. Although similar re-
sults have been reported for the Kuramoto-Sivashinsky equa-
tion in previous works for the temporal chaos regime in
small systems �L=2�� �4,14,15�, here we report this scenario
for a transition to spatiotemporal chaos in a large �L=536�
high-dimensional KS system. Since chaotic saddles can be
studied in laboratory experiments �41,42�, we believe our
results can help to improve the understanding of other ex-
tended dissipative systems that exhibit crisislike transitions
to spatiotemporal chaos, such as the pipe flow experiment
�43� and nonlinear optical systems �44�.
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FIG. 7. The temporally chaotic saddle �TCS, black� and spa-
tiotemporally chaotic saddle �STCS, gray� at �=0.637.
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