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ABSTRACT 

Reliable agricultural statistics has become increasingly important to decision makers. 
Especially when timely obtained, agricultural information is highly relevant to the 
strategic planning of the country. Although remote sensing shows to be of great 
potential for agricultural mapping applications, with the benefit of further improving 
official agricultural statistics, its potential has not been fully explored. There are very 
few successful examples of operational remote sensing application for systematic 
mapping of agricultural crops, and they are strongly supported by visual image 
interpretation to allow accurate results. Indeed, despite the substantial advances in 
remote sensing data analysis, techniques to automate remote sensing data analysis 
focusing on agricultural mapping applications are highly valuable but have to maintain 
consistency and accuracy. In this context, there continues to be a demand for 
development and implementation of computer aided methods to automate the processes 
of analyzing remote sensing datasets for agriculture applications. Thus, the main 
objective of this thesis is to propose implementation of computer aided methodologies 
to automate, maintaining consistency and accuracy, processes of remote sensing data 
analyses focused on agricultural thematic mapping applications. This thesis was written 
as a collection of two papers related to a core theme, each addressing the following 
main points: (i) multitemporal, multispectral and multisensor image analysis that allow 
the description of spectral changes of agricultural targets over time; and (ii) artificial 
intelligence in modeling phenomena using remote sensing and ancillary data. Study 
cases of sugarcane harvest in São Paulo and soybean mapping in Mato Grosso were 
used to test the proposed methods named STARS and BayNeRD, respectively. The two 
methods developed and tested confirm that remotely sensed (and ancillary) data analysis 
can be automated with computer aided methods to model a range of cropland 
phenomena for agriculture applications, maintaining consistency and accuracy. 
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MÉTODOS SPECTRO-TEMPORAL E BAYESIANO PARA ANÁLISE DE  

DADOS EM SENSORIAMENTO REMOTO AGRÍCOLA 

 

RESUMO 

Informações agrícolas confiáveis tem se tornado cada vez mais importantes para os 
tomadores de decisões. Especialmente quando são obtidas em tempo hábil, essas 
informações são altamente relevantes para o planejamento estratégico do país. Apesar 
de o sensoriamento remoto mostrar-se promissor para aplicações em mapeamento 
agrícola, com potencial de melhorar as estatísticas agrícolas oficiais, esse potencial não 
tem sido amplamente explorado. Existem poucos exemplos bem sucedidos do uso 
operacional do sensoriamento remoto para mapeamento sistemático de culturas 
agrícolas e, para garantir resultados precisos, eles são fortemente baseados em 
interpretação visual de imagens. De fato, apesar dos substanciais avanços em análise de 
dados de sensoriamento remoto, novas técnicas para automatizar a análise de dados em 
sensoriamento remoto com aplicações agrícolas são desejáveis, especialmente no 
propósito de manter a consistência e a precisão dos resultados. Neste contexto, existe 
uma demanda crescente pelo desenvolvimento e implementação de métodos 
automatizados de análise de dados de sensoriamento remoto com aplicações em 
agricultura. Assim, o principal objetivo desta tese é propor o desenvolvimento e a 
implementação de métodos para automatizar a análise de dados de sensoriamento 
remoto em aplicações agrícolas, com foco na consistência e precisão dos resultados. 
Este documento foi escrito como uma coleção de dois artigos, cada um com foco nos 
seguintes pontos: (i) análise multitemporal, multiespectral e multisensor, permitindo a 
descrição das variações espectrais de alvos agrícolas ao longo do tempo; e (ii) 
inteligência artificial na modelagem de fenômenos usando dados de sensoriamento 
remoto e informações complementares de maneira integrada. Dois estudos de caso 
referentes ao mapeamento da colheita da cana em São Paulo e ao mapeamento da soja 
no Mato Grosso foram usados para testar as metodologias batizadas de STARS e 
BayNeRD, respectivamente. Os resultados dos testes confirmaram que ambos os 
métodos propostos foram capazes de automatizar processos de análises de dados de 
sensoriamento remoto com aplicações agrícolas, com consistência e precisão. 
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1 Introduction 

Reliable agricultural statistics has become increasingly important to decision makers. 

Especially when timely obtained, agricultural information is highly relevant to the 

strategic planning of the country (e.g., inventory control, pricing, etc.) (PINO, 1999). 

Until 1938, the official agricultural statistics of Brazil were the sole responsibility of the 

Ministry of Agriculture, Livestock and Food Supply (MAPA – Ministério da 

Agricultura, Pecuária e Abastecimento). Later, this responsibility was shared with the 

Brazilian Institute of Geography and Statistics (IBGE – Instituto Brasileiro de 

Geografia e Estatística). From 1938 until the 1970s, several methodologies were 

applied by MAPA and IBGE to estimate agricultural statistics under the responsibility 

of public agencies (IBGE, 2002). In January 1974, IBGE was decreed the official 

agency for agricultural statistics in Brazil. However, these statistics have been estimated 

using methods based on subjective techniques. According to IBGE (2002), the estimates 

are based on questionnaires distributed to producers or to regional representatives of the 

agricultural sector. Despite of the relevance of these estimates, two aspects shall be 

pointed out about the data produced by IBGE: (i) the estimates are carried out based on 

a subjective method, therefore, it is not possible to statistically treat the errors, and (ii) 

the municipality estimates (Produção Agrícola Municipal – PAM) are published with a 

time lag of about two years (BATISTA et al., 1978; IBGE, 2012b). 

A significant improvement in the quality of satellite imagery was observed in 1984 with 

the advent of the Thematic Mapper (TM) sensor aboard the Landsat-5 satellite, 

widespreading the use of satellite images to map agricultural areas (NELLIS et al., 

2009). Another important event that increased the use of satellite images for agricultural 

applications was the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor 

aboard the Terra satellite launched in late 1999 (BECKER-RESHEF et al., 2010; 

RUDORFF, B. F. T. et al., 2007). Although the moderate spatial resolution of 250 m of 

the MODIS sensor restricts its use to areas of extensive farming (crops planted in large 

fields) (RUDORFF, C. M. et al., 2007), it is compensated by a wide imaging swath 

allowing an almost dayly temporal resolution (PITARCH et al., 2011). Indeed, the 

Earth observing imagery counts on a wide range of sensors with different 

characteristics, acquiring a huge amount of data with potential use for different 
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applications. Thus, due to its synoptic and systematic characteristic (JENSEN, 2006), 

orbital remote sensing has been pointed out as a valuable tool for mapping and 

monitoring agricultural crops. 

Although remote sensing has great potential for agricultural mapping applications, with 

the benefit of further improving official agricultural statistics in Brazil (MELLO et al., 

2013a), its potential has not been widely explored for this purpose. There are very few 

successful examples of operational use of remote sensing for systematic mapping of 

agricultural crops (ATZBERGER, 2013). Among those few examples, we highlight the 

Canasat and the Soy Moratorium projects, developed by INPE in partnerships with the 

private and public institutions. 

Since 2003, the Canasat Project mapped the sugarcane crop in the south-central region 

of Brazil (São Paulo, Paraná, Minas Gerais, Mato Grosso, Mato Grosso do Sul, Goiás, 

Rio de Janeiro and Espírito Santo States) (RUDORFF et al., 2010). Moreover, since 

2006, the Canasat Project mapped the type of sugarcane harvest (i.e., with or without 

the straw burning during preharvest) in São Paulo State (AGUIAR et al., 2011). 

Furthermore, the Canasat Project also developed complementary research on topics 

such as understanding the dynamics of land use change in response to the expansion of 

sugarcane (ADAMI et al., 2012b). The Soy Moratorium Project, in its turn, 

incorporated the use of satellite imagery in 2009 to identify annual crops in deforested 

land after July 24, 2006, followed by air survey to identify soybean plantations among 

the pre-selected annual crops (RUDORFF et al., 2011, 2012). 

An important point to be highlighted is that the two previously mentioned projects are 

strongly supported by visual image interpretation to allow accurate results (ADAMI et 

al., 2012a). Hence, techniques to automate the remote sensing data analysis (LU; 

WENG, 2007) focusing on agricultural mapping applications are highly desirable 

(MELLO, 2009; VIEIRA, 2000) but have to maintain consistency and accuracy 

(LOVELAND et al., 2002). 

Lu and Weng (2007) made a literature review on the subject of image classification 

methods and the progress made in terms of improving the classification results. Among 

the main features listed by the authors, advances in terms of automating processes for 
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remote sensing data analysis converge around: (i) the development and use of advanced 

algorithms for classification, especially those that incorporate the expert's knowledge; 

(ii) the use of multispectral, multitemporal and multisensor information; and (iii) the use 

of ancillary data (e.g., topography, soil, tabular data, etc.) to complement data collected 

by the sensors. 

In recent decades, the literature offers some cases of new classification techniques, 

focusing on agricultural applications. Santos et al. (2012), for example, proposed a 

classification method that integrates the result of different classifiers and, according to 

the authors, achieved more than 80% of overall accuracy for classifications of coffee 

plantations in mountain areas of Minas Gerais State, Brazil. The technique of 

combining results from different classifiers had already been reviewed and detailed by 

Vieira (2000), who achieved an improvement of almost 20% in the value of the kappa 

index (COHEN, 1960) for a particular study of crop classification in England. 

In addition, the combination of different techniques has also proved to be effective for 

classification. Vieira et al. (2012), for example, proposed the integrated use of data 

mining and object based image analysis (OBIA) to identify, with 94% overall accuracy, 

sugarcane areas in three municipalities of São Paulo State. In fact, there is a role for the 

use and development of new tools for OBIA. The Geographic Data Mining Analyst 

(GeoDMA), described by Körting et al. (2013), is a successful example of 

implementing an integrating set of tools. 

However, despite the substantial advances in developing new classifiers [e.g., the 

Support Vector Machine (MOUNTRAKIS et al., 2011)] and new approaches of 

automated methodologies for remote sensing data analyses [e.g., combination of 

classifiers (SANTOS et al., 2012)], there is still a need for the development of robust 

methods (WILKINSON, 2005) focused on image classification for remote sensing 

applications in agriculture (ATZBERGER, 2013; VIEIRA, 2000). 

In this context, there continues to be a demand for development and implementation of 

computer aided methods to automate the processes of analyzing remote sensing datasets 

for agriculture applications. Thus, this thesis proposes the implementation of 
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methodologies to automate processes of remote sensing data analyses focused on 

agricultural thematic mapping applications. 

1.1. Objective, Thesis Structure and Content 

The main objective of this thesis is to automate, maintaining consistency and accuracy, 

processes of remote sensing data analysis with emphasis on thematic mapping of 

agricultural applications. Two main points were addressed: 

a) Multitemporal, multispectral and multisensor image analysis that allow the 

description of spectral changes of agricultural targets over time; 

b) Artificial intelligence in modelling phenomena using remote sensing and 

ancillary data. 

The working hypothesis was that processes of remotely sensed data analysis focused on 

crop mapping can be automated with computer aided methods and produce highly 

accurate maps. 

This thesis was written as a collection of two papers related to a core theme. Each paper 

describes the two aforementioned points. A brief description of the structure of each 

paper follows. 

Chapter 2: This chapter aims at describing the development and 

implementation of a method to synthesize the full information content of a 

multispectral-multitemporal remote sensing dataset into a single synthetic image. 

It presents the full mathematical structure and conceptual definitions of the 

method named Spectral-Temporal Analysis by Response Surface (STARS). A 

case study was used to rigorously assess the STARS method, evaluating its 

potential to accurately characterize the sugarcane harvest practices in Brazil. 

Chapter 3: In this chapter we proposed an innovative method to integrate 

remote sensing and ancillary data analysis in a logical perspective. It consists on 

the application of Bayesian theory using an artificial intelligence technique 

known as Bayesian Networks. The chapter aims at describing the development 

and implementation of this new method named Bayesian Networks for Raster 
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Data (BayNeRD). The method was used to model soybean plantations in Mato 

Grosso State, Brazil, based on vegetation indices, soil maps, roads network, 

topography and hydrography data stored in raster format. 
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2 STARS: a new method for multitemporal remote sensing1 

Abstract: 

There is great potential for the development of remote sensing methods that integrate 

and exploit both multispectral and multitemporal information. This paper presents a 

new image processing method: Spectral-Temporal Analysis by Response Surface 

(STARS), which synthesizes the full information content of a multitemporal-

multispectral remote sensing image data set to represent the spectral variation over time 

of features on the Earth’s surface. Depending on the application, STARS can be 

effectively implemented using a range of different models [e.g., polynomial trend 

surface (PTS) and collocation surface (CS)], exploiting data from different sensors, with 

varying spectral wavebands and acquiring data at irregular time intervals. A case study 

was used to test STARS, evaluating its potential to characterize sugarcane harvest 

practices in Brazil, specifically with and without preharvest straw burning. Although the 

CS model presented sharper and more defined spectral-temporal surfaces, abrupt 

changes related to the sugarcane harvest event were also well characterized with the 

PTS model when a suitable degree was set. Orthonormal coefficients were tested for 

both the PTS and CS models and performed more accurately than regular coefficients 

when used as input for three evaluated classifiers: instance-based, decision-tree, and 

neural network. Results show that STARS holds considerable potential for representing 

the spectral changes over time of features on the Earth’s surface, thus becoming an 

effective image processing method, which is useful not only for classification purposes 

but also for other applications such as understanding land-cover change. The STARS 

algorithm can be found at www.dsr.inpe.br/~mello. 

  

                                                      

 

1 This chapter is an adapted version of the paper: 
Mello, M. P.; Vieira, C. A. O.; Rudorff, B. F. T.; Aplin, P.; Santos, R. D. C.; Aguiar, D. A. STARS: a 
new method for multitemporal remote sensing. IEEE Transactions on Geoscience and Remote 
Sensing, v. 51, n. 4, p. 1897-1913, 2013. 
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2.1. Introduction to STARS 

Spaceborne remote sensing is widely used to monitor land-cover change on the Earth’s 

surface. However, due to the complexity of land-cover dynamics, it is difficult to 

establish patterns that can be standardized to represent and map such change (DeFRIES; 

BELWARD, 2000; LAMBIN; GEIST, 2006). By the 1990s, the scientific community 

had recognized the value of remote sensing as the chief source of spatial data for driving 

wide-area analysis (SELLERS et al., 1995). The key characteristics of satellite sensor 

images are that they are being continuously recorded at specific spectral wavebands 

over the entire Earth and can facilitate observation of environmental change at local to 

global scales (APLIN, 2006). As pointed out by DeFries and Belward (2000), the 

continuity of spaceborne remote sensing observations is a key factor for the success of 

using these data for characterizing change on the Earth’s surface. 

A wide range of studies have been conducted over the last decade to improve spectral 

(DEMIR et al., 2011b; LANDGREBE, 2005) and temporal (BOVOLO et al., 2012; 

DEMIR et al., 2011a; SMITS; BRUZZONE, 2004) analysis and comprehension of 

remotely sensed data related to changes on the Earth’s surface. However, these studies 

are often limited spectrally or temporally, either by constraining examination of image 

spectral profile (LANDGREBE, 2005) (i.e., multispectral analysis) to only a single date 

image (LEE; ERSOY, 2007; SOUTH et al., 2004) or by constraining examination of 

image temporal profile (i.e., multitemporal analysis) to only a single spectral layer (e.g., 

a vegetation index time series) (GALFORD et al., 2008; LUNETTA et al., 2006; 

SALMON et al., 2011; WARDLOW et al., 2007). Wilkinson (2005) suggests that 

satellite sensor image classification results have not significantly improved for a 

considerable period of time. Moreover, relatively few integrated multispectral-

multitemporal approaches have been reported in the scientific literature (e.g., 

BRUZZONE; SMITS,2002; CARRÃO et al. 2008). Thus, there is great potential for the 

development of remote sensing methods that integrate and exploit both multispectral 

and multitemporal information (COPPIN et al., 2004). 

Novel multispectral-multitemporal methods are likely to be of particular benefit where 

they are sufficiently robust and adaptable to be used in a range of applications, such as 

land-cover inventorying [e.g., change detection (LAMBIN; LINDERMAN, 2006; 
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LAMBIN; STRAHLER, 1994)], environmental monitoring [e.g., deforestation (SILVA 

et al., 2008)], or resource management [e.g., maximizing agricultural productivity 

(BARGIEL; HERRMANN, 2011)], and in a range of different circumstances. For 

instance, if we are interested in monitoring agricultural crops over the growing season, 

it may be desirable to take into account the gradual spectral change of each crop 

(VIEIRA, 2000). In contrast, if we are interested in detecting harvest, it may be 

desirable to consider the abrupt spectral change that occurs at the time the crop is 

harvested (MELLO, 2009). It may be also desirable to constrain data dimensionality to 

avoid both high computational costs and the Hughes phenomenon (HUGHES, 1968). 

This paper presents an advanced image processing method to represent the spectral-

temporal behavior of features on the Earth’s surface: Spectral-Temporal Analysis by 

Response Surface (STARS). STARS uses the concept of response surfaces for spectral-

temporal analyses of multitemporal-multispectral remote sensing data (VIEIRA, 2000). 

It allows the use of image data from different sensors with varying spectral wavebands 

and irregular time intervals. Moreover, different model options can be used to fit the 

response surfaces according to the application. 

This work draws on earlier tests using response surfaces to map agriculture fields (e.g., 

Epiphanio et al. (2010)), although these tests were limited to classification analysis. 

This new work presents the full mathematical structure of STARS and its conceptual 

definitions and treats STARS as a generic image processing method that can be used not 

only for classification but also for other applications such as understanding land-cover 

change. Within this context, a case study was used to test the STARS method, 

evaluating its potential to characterize sugarcane harvest practices in Brazil. In the next 

section, the STARS methodology is described in full. Then, in Section 2.3, Brazilian 

sugarcane agriculture is introduced. This is followed, in Section 2.4, by an outline of the 

research materials and methods employed in the application of STARS for the 

sugarcane harvest case study. In Section 2.5, the results of STARS and subsequent 

classification of the STARS outputs are presented, discussed, and rigorously assessed in 

terms of accuracy. This leads to final concluding comments in Section 2.6. 
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2.2. STARS methodology 

2.2.1. Rationale 

The STARS method operates by representing the full information content of a 

multitemporal-multispectral remote sensing image data set as a single synthetic 

multicoefficient image (MCI). 

A multispectral remote sensing image of a specific area contains S spectral wavebands, 

with L lines per C columns. At each ground resolution element, usually represented as a 

pixel, there is a spectral profile formed by the S spectral wavebands. When this pixel is 

imaged over time at T dates, a 3-D spectral-temporal space (STS) is formed. For 

modeling purposes, we shall assume that STS is formed by two independent variables, 

namely, time (t) and spectrum (s), and one dependent variable representing the observed 

values of the sensor (r ), such as reflectance or band transformation (e.g., vegetation 

index2). 

Thus, for each pixel, there are n points distributed within the STS, where n is given by 

the total sum of the number of the spectral wavebands for all T dates. These points can 

be obtained from several observations of sensors with different spectral wavebands that 

represent the spectral-temporal profile of the pixel. In short, the idea is to establish a 

model that describes the STS points based on the function 

r  = f (t,s). (2.1) 

The model that represents the relationship between dependent (r ) and independent (t,s) 

variables is denominated the spectral-temporal response surface model and will have k 

coefficients to be estimated for each pixel. Therefore, each coefficient will compose a 

specific synthetic band of the MCI. An overview of the STARS is presented in Fig. 2.1. 

                                                      

 

2 The s variable can also represent arbitrary labels instead of spectral wavebands, but it may cause a lack 
of robustness (MELLO, 2009). 
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Figure 2.1 - Framework of the STARS method. 

2.2.2. Spectral-temporal response surface model 

The modeling of the spectral-temporal response surface assumes that the variables in the 

STS should be of the same magnitude, or else, they should be rescaled (VIEIRA, 2000). 

As discussed by Watson (1992), there are several options for modeling the function 

shown in Eq. 2.1, and the choice used will depend on the purpose of the application. 

Two models tested by Vieira (2000) are particularly useful to represent Earth surface 

changes: (i) the polynomial trend surface (PTS) model that can generate relatively 

smooth surfaces representing gradual change such as crop growth and (ii) the 

collocation surface (CS) model that can generate relatively sharp surfaces representing 

abrupt change such as crop harvest. 

2.2.2.1. Polynomial Trend Surface 

PTS is a polynomial regression model that describes the distribution trend of the STS 

points (WATSON, 1992). Therefore, since PTS models tend to describe the general 

behavior of observed values on the spectral-temporal response surfaces, it is expected 

that their use minimizes problems associated with aberrant or noisy data such as cloud 

or cloud shadow in multitemporal images (VIEIRA, 2000). On the other hand, by 

describing general behavior, a PTS model may obscure important extreme values 

observed. 
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PTS is considered to be a special case of the general linear regression model (KUTNER 

et al., 2005). In response surface interpolations, Watson (1992) describes the PTS as a 

bivariate linear combination expressed in terms of powers and cross products of the two 

independent variables (in this case, t and s). With the condition k < n, the k coefficients 

can be estimated using any method to solve overdetermined systems (e.g., least 

squares). 

The system of simultaneous linear equations for the PTS model with degree d has the 

form 

 
(2.2) 

where the k coefficients are denoted by ββββ (from β0 to βk-1) that will be estimated to their 

best unbiased point estimators, which are denoted by ��	(from ��	 to ��
��), and εεεε 

represents the error vector assumed to be uncorrelated with mean equal to zero and 

variance equal to σ2. For PTS models with two independent variables (e.g., t and s), k 

will depend on d following the relationship 

 
(2.3) 

For each pixel, the system in Eq. 2.2 can be written in matrix form as 

 (2.4) 

where r  is a column vector with n observed values, X (commonly known as design 

matrix) is a full column rank matrix (i.e., linearly independent columns) that has n rows 

by k columns containing powers and cross product terms of independent variables, ββββ is 

a column vector with k coefficients to be estimated, and εεεε is a column vector with n 

error elements. 

As pointed out by Forsythe (1957), the solution of Eq. 2.4 to find ��	 using 
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 (2.5) 

might be inaccurate due to the fact that X becomes progressively more ill-conditioned 

as the degree of polynomials increases. However, Mather (1976) suggests that the 

modified Gram-Schmidt (MGS) orthonormalization (BJÖRCK, 1967) is an alternative 

to obtain a more accurate solution. This solution does not require matrix inversion but 

works upon the X matrix and is accurate even in badly conditioned problems, although 

the degree of accuracy is affected by the size of the residuals (MATHER, 1976). The 

use of the MGS orthonormalization has other advantages such as the minimization of 

computation roundoff errors and the independence of the terms of the equation (and 

then, the orthonormal coefficients are uncorrelated). This independence is important 

because it makes it possible to add or remove terms without the need to recalculate the 

existing ones. This fact enables some estimated orthonormal coefficients to be discarded 

in order to reduce dimensionality (see DRAPER; SMITH, 1966). 

Thus, we can rewrite Eq. 2.4 using the orthonormal corresponding system given by 

 (2.6) 

where Q is an orthonormal matrix with n rows by k columns, calculated using MGS 

orthonormalization; αααα is a column vector with k orthonormal coefficients (i.e., from α0 

to αk-1); and ϵ is a column vector with n error elements associated with the 

orthonormalized system. 

As pointed out by Mather (1976), the solution using MGS orthonormalization requires 

two steps: (i) the conversion of X to its orthonormalized corresponding Q and (ii) the 

determination of the orthonormal coefficients αααα. Considering that these orthonormal 

coefficients are abstract and cannot be directly interpreted, it might be interesting to 

convert them into the regular coefficients of the original PTS model (ββββ). This 

conversion can be done by the QR factorization (GOLUB; VAN LOAN, 1996), where 

the Q matrix is the same Q in the MGS process. 



14 

 

The MGS orthonormalization is carried out as follows: if we call x*1, x*2, …,  x*k the 

column vectors of X (the symbol “∗” represents all row elements within a column), then 

the first orthonormal column vector of Q (i.e., q*1) is given by 

 
(2.7) 

where ||x*1|| represents the norm of the column vector x*1. For the following column 

vectors of Q, the ith column vector (q* i) is calculated using an iterative process given by 

i-1 steps: 

 

(2.8) 

and its subsequent normalization is given by 

 
(2.9) 

The normalization to find q* i is performed prior to the calculation of the next column 

vector q* i+1. 

As discussed by Draper and Smith (1966) and Golub and van Loan (1996), the solution 

for the orthonormal system in Eq. 2.6 according to the orthonormality characteristic 

Q’Q = I, where I is the identity matrix, is given by the least squares as 

 (2.10) 

If desirable, the regular coefficients of the PTS model (ββββ) can be calculated using the 

QR factorization. Thus, through the QR factorization, we can write 



15 

 

 (2.11) 

where R is a square upper triangular matrix with k rows by k columns, with its elements 

calculated by 

 (2.12) 

Thus, using Eq. 2.11 in Eq. 2.5, the least squares solution becomes 

 (2.13) 

The solution of this upper triangular system will estimate the regular coefficients of the 

PTS model (ββββ) using, for instance, backward substitution. Another way to estimate ββββ is 

using the relationship between Eqs. 2.10 and 2.13. Thus, the conversion of the 

orthonormal coefficients αααα to ββββ can be made by �� = �����. 

2.2.2.2. Collocation Surface 

CS is a model that uses the distances among the STS points to fit a surface that passes 

through all n points (WATSON, 1992). Spectral-temporal response surfaces fitted with 

CS models tend toward horizontal planes as the distance in the t-s plane of the STS 

increases (HARDY, 1971). Thus, this model is recommended for use both when remote 

sensing images are relatively free of noise and when the images were acquired from 

sensors with similar spectral characteristics. 

Given the set of n points, the procedure solves the system of simultaneous linear 

equations estimating the k coefficients δδδδ. The CS model in matrix form is given by 

 (2.14) 

where ξ is a column vector with n error elements associated with the collocation model, 

and D is the distance matrix, i.e., 
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(2.15) 

with 

 
(2.16) 

where d(pi,pj) is a function of the distance between the projections of the ith and jth 

points on the t-s plane of the STS. This distance is modified by the nonnegative constant 

e, which, in the case of relatively small-scale variations in distances, can be set to zero 

(HARDY, 1971). 

It is worth mentioning that in the CS model, there is no dimensionality reduction since 

k = n. Therefore, Eq. 2.14 is a square system, and its stable solution can be found to be 

the same as for Eq. 2.4 using MGS orthonormalization, after replacing X and ββββ for D 

and δδδδ, respectively (GOLUB; VAN LOAN, 1996). Then, the conversion of the 

orthonormal coefficients into the regular coefficients of the CS model (δδδδ) is performed 

the same way as in the PTS model. 

2.2.3. Multi-Coefficient Image 

Response surfaces may be comparated either directly (e.g., by difference) or indirectly 

(e.g., by estimated coefficients). The main advantage of using the estimated coefficients 

is that this approach tends to represent the form of the reponse surface, which makes the 

method more robust (VIEIRA, 2000). 

The MCI has L lines per C columns and k synthetic bands formed by the k estimated 

coefficients for each pixel in a study area (with L lines per C columns). Thus, the 

estimated coefficients that compose the k bands of the MCI represent the information 

content of the multispectral-multitemporal remote sensing image data set for the study 

area. For example, in the PTS model, β0 represents the surface offset with regard to the 

STS origin (KUTNER et al., 2005). Indeed, each estimated coefficient, in some way, 

contains the description of the spectral variation over time. 
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2.3. Sugarcane agriculture context 

The possible consequences of CO2 accumulation in the atmosphere due to the use of 

fossil fuels, as well as the rise of oil prices, have triggered a considerable global interest 

in biofuels, which are considered relatively low-pollution energy sources (LEITE et al., 

2009). Hoogwijk et al. (2005) cite studies that project future growth of biofuels to 

supply between 5% and 50% of global energy demand. The potential for any biofuel to 

mitigate greenhouse gas (GHG) emissions is determined by the balance of emissions 

during all production steps, including agroindustrial ones, and biofuel consumption 

(MACEDO et al., 2008). Thus, agricultural management techniques have a major role 

in calculating such balance (KIM et al., 2009). 

Of all biofuels, ethanol derived from sugarcane offers the highest GHG reduction rate 

when compared with gasoline (WALTER et al., 2008). However, some management 

techniques such as preharvest burning (BH), which can make manual harvesting easier, 

decrease this biofuel mitigating potential, since CO, CH4, and particulate material are 

emitted through this process (FIGUEIREDO; LA SCALA JR., 2011; GALDOS et al., 

2009; GOLDEMBERG et al., 2008; KIRCHHOFF et al., 1991). Moreover, the practice 

of BH has been identified as the cause of an increase in respiratory diseases, as 

measured by hospital admissions data, mainly among children and senior citizens 

(CANÇADO et al., 2006; LARA et al., 2005; URIARTE et al., 2009). In addition, 

leaving straw on the fields (i.e., not burning) decreases soil and water loss and helps in 

the maintenance of soil carbon storage (GALDOS et al., 2009). 

Given the detrimental environmental consequences of BHs, São Paulo State, which is 

responsible for 60% of ethanol production in Brazil, has pledged agreement to a “Green 

Ethanol” Protocol (for more details, see Lucon and Goldemberg (2010)). This protocol, 

agreed among the São Paulo State Secretary of Environment, the Sugarcane Industry 

Union, and the supplier associations and ethanol producers, aims to gradually reduce 

straw burning in sugarcane plantations, leading to a complete cessation of the practice 

by 2014 for mechanized areas (terrain slope ≤ 12%) and 2017 for nonmechanized areas 

(terrain slope > 12%). 
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Since 2006, the Brazil’s National Institute for Space Research (INPE) has monitored 

adherence to this protocol through remote sensing. To achieve this, visual interpretation 

has been used to analyze at least one image coverage per month over harvest seasons 

(AGUIAR et al., 2011; RUDORFF et al., 2010). Visual image interpretation is 

particularly effective for distinguishing BH fields and green harvested (GH) fields (i.e., 

nonburned) due to the strong contrast between dark burned fields, where bare soil is 

dominant after harvest (see Fig. 2.2), and bright GH fields, where a layer of dry leaves 

(straw) covers the ground after harvest (see Fig. 2.3). The dark or bright contrast 

indicates whether the sugarcane field was BH or GH, and this remains very evident for 

several days or even weeks after harvest (AGUIAR et al., 2011). However, although 

visual interpretation can be effective for sugarcane harvest characterization, it is a 

laborious task and not practical for very large areas or very regular surveys. Alternative 

automated classification procedures hold considerable potential here, particularly since 

crop monitoring is required for such a large area throughout the April to December 

harvest season (RUDORFF et al., 2010). 

 

Figure 2.2 - BH sugarcane field, highlighting (inset) its appearance in a false color composite 
TM/Landsat-5 image. 
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Figure 2.3 - Mechanized sugarcane harvest without BH (called GH), showing the straw 
remaining on the ground and highlighting (inset) its appearance in a false color 
composite TM/Landsat-5 image. 

2.4. Research materials and methods 

This section presents the materials and methods employed in the application of STARS 

to a sugarcane classification case study. Specifically, two types of sugarcane harvest 

practices are investigated: with BH and GH. Fig. 2.4 shows a flowchart summarizing 

the methods employed in the application of STARS to the case study. In short, 66 

original wavebands (11 images, each with six spectral wavebands) of a multitemporal-

multispectral Landsat data set were georeferenced and radiometrically corrected 

(including atmospheric correction). The resulting 66 georeferenced surface reflectance 

wavebands were then used as input for STARS, which ran under 20 different scenarios. 

Each scenario generated a different MCI, and the k synthetic bands of each MCI were 

used as input for three classifiers, producing 60 classified thematic maps. The 

georeferenced surface reflectance wavebands were also used together with a 5 m 

Systeme Pour l’Observation dela Terre (SPOT) image and field data to create a 

reference thematic map, which was used to select both the training and the testing 

samples for classification and accuracy assessment, respectively. 
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Figure 2.4 - Flowchart summarizing the application of STARS to the case study. 

The research materials and methods employed in the application of STARS are detailed 

in the following subsections. 

2.4.1. Study area 

The study area, shown in Fig. 2.5, is a densely cultivated sugarcane region in São Paulo 

State, well represented by the two harvest types practiced: BH and GH. This region is 

located in the northern part of São Paulo State and comprises three municipalities, 

namely, Guará, Ipuã, and São Joaquim da Barra. In total, these municipalities cultivated 

about 60,000 ha of sugarcane in 2001 (IBGE, 2012b), with significant areas harvested 

both BH and GH. The year 2001 was used to test STARS due to the availability of a 

series of cloud-free Landsat sensor images, plus a strong field reference data set used to 

both train classifiers and assess classification results. 
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Figure 2.5 - Location of the study area, in São Paulo State, Brazil, highlighting the 
municipalities of Guará, Ipuã, and São Joaquim da Barra in a false color 
composite ETM+/Landsat-7 image acquired on July 29, 2001. 

2.4.2. Multitemporal Landsat sensor images 

Eleven cloud-free Landsat-5 Thematic Mapper (TM) and Landsat-7 Enhanced Thematic 

Mapper Plus (ETM+) images were acquired in 2001 (T = 11), covering dates from the 

beginning of the harvest season in April to the end of the harvest season in December 

(RUDORFF et al., 2010) (see Table 2.1). 

Table 2.1 - Summary of the 11 Landsat images used. 

Image # Sensor/Satellite Date Day of year 

1 ETM+/Landsat-7 Apr. 08, 2001 98 

2 TM/Landsat-5 Apr. 16, 2001 106 

3 TM/Landsat-5 May 02, 2001 122 

4 TM/Landsat-5 May 18, 2001 138 

5 TM/Landsat-5 Jun. 03, 2001 154 

6 TM/Landsat-5 Jul. 05, 2001 186 

7 ETM+/Landsat-7 Jul. 29, 2001 210 

8 ETM+/Landsat-7 Aug. 14, 2001 226 

9 TM/Landsat-5 Sep. 07, 2001 250 

10 TM/Landsat-5 Oct. 25, 2001 298 

11 ETM+/Landsat-7 Dec. 04, 2001 338 
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Analysis was conducted using six of the Landsat sensors’ spectral wavebands, 

corresponding to the blue (b1), green (b2), red (b3), near-infrared (NIR, b4), and 

shortwave infrared (SWIR, b5 and b7) parts of the electromagnetic spectrum. The 

spatial resolution of Landsat TM/ETM+ is 30 m. 

2.4.3. Image georeferencing 

The remote sensing images were georeferenced using 21 ground control points collected 

with a dual-frequency Global Positioning System (GPS) receiver with differential 

correction based on the two nearest stations in the Brazilian Network for Continuous 

Monitoring (RBMC: Rede Brasileira de Monitoramento Contínuo), i.e., UBER and 

MGUB, which are both located in the municipality of Uberlândia, Minas Gerais State, 

Brazil. The coordinates of these control points were projected according to the 

WGS84/UTM-23S map projection system, achieving positional errors of less than 

50 cm. The images were georeferenced using first-degree polynomials and nearest-

neighbor resampling, and the output images had a root-mean-square error of less than 

0.5 pixels, as recommended by Dai and Khorram (1998). 

2.4.4. Image radiometric correction 

As recommended by Song et al. (2001), atmospheric correction should be taken into 

consideration in preprocessing for applications where a common radiometric scale is 

assumed among the multitemporal remote sensing data set. Thus, each Landsat image 

(see Table 2.1) was converted from digital number to radiance and then to top of 

atmosphere reflectance (apparent reflectance), as proposed by Markham and Barker 

(1986), using the parameters presented by Chander et al. (2009). When used for 

multitemporal analysis, Schroeder et al. (2006) recommended the use of radiometric 

normalization rather than atmospheric correction of each image. In this case, the July 

29, 2001 image (image #7 in Table 2.1) was atmospherically corrected and used as a 

base image for subsequent radiometric normalization of the remaining ten images. 

Image #7 was chosen for atmospheric correction since: (i) this is from a central period 

in the multitemporal data set (see Table 2.1), and (ii) this is a Landsat-7/ETM+ image, 

and the Landsat-7 satellite orbits in tandem with the EOS Terra satellite sensor for near-
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coincident observations; hence, the aerosol optical depth product from Terra’s MODIS 

could be used to estimate the visibility parameter in the atmospheric correction 

procedure (OLIVEIRA et al., 2009). Image #7 was then converted from top of 

atmosphere reflectance to surface reflectance using the Second Simulation of the 

Satellite Signal in the Solar Spectrum (6S) algorithm (VERMOTE et al., 1997). 

Eventually, using the processed image #7 surface reflectance as base, the other ten 

Landsat images listed in Table 2.1 were radiometrically normalized based on the 

iteratively reweighted multivariate alteration detection (IR-MAD) transformation 

(CANTY; NIELSEN, 2008; CANTY et al., 2004) [with penalization parameter set to 

zero (NIELSEN; CANTY, 2005)]. After this normalization, it could be assumed that all 

Landsat sensor images were converted to surface reflectance and that all six spectral 

wavebands of the two Landsat sensors shared the same radiometric characteristics. 

2.4.5. Spectral-temporal profile investigation 

Since STARS aims to represent spectral response over time, it is important to have 

some knowledge about the spectral-temporal profile of the classes of interest prior to 

applying STARS. If the spectral profiles of the classes are different over time, it is 

expected that STARS will be able to represent each class of interest (enabling classifiers 

to distinguish these classes). Mello (2009) used six spectral wavebands of TM/Landsat-

5 (b1 to b5 and b7) acquired at six different dates throughout the harvest season of 2007 

to investigate the dynamic spectral-temporal nature of BH and GH sugarcane fields in 

São Paulo State (see Fig. 2.6). 

Fig. 2.6 shows that the two harvest events (BH and GH) present distinct spectral 

responses over time. The spectral-temporal dynamic of the BH sugarcane field (see 

Fig. 2.6, left-hand side) is characterized by a minor reflectance decrease in the green 

waveband (b2) and a minor reflectance increase in the red waveband (b3). A significant 

reduction in the reflectance value is observed in the NIR waveband (b4) due to biomass 

removal during burning and harvest (see Fig. 2.2). The SWIR wavebands (b5 and b7) 

are strongly affected by soil type and moisture content (CARTER, 1991; GAUSMAN et 

al., 1969; MELLO, 2009). 
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Figure 2.6 – Spectral-temporal dynamic of BH and GH sugarcane fields. Source: Adapted from 
Mello (2009). 

The spectral-temporal dynamic of the GH sugarcane field (see Fig. 2.6, right-hand side) 

is characterized by relatively high reflectance values in all visible spectral wavebands 

(b1, b2, and b3) due to the bright reflectance of dry matter (straw). In the NIR waveband 

(b4), reflectance is generally quite low due to biomass loss (GAUSMAN et al., 1969). 

In the SWIR wavebands (b5 and b7), reflectance is relatively high due to the low water 

content of the straw that remains on the ground (CARTER, 1991) (see Fig. 2.3). As the 

sugarcane crop gradually regrows after harvest, either BH or GH, the fields’ spectral 

profiles over time tend to become similar to those observed before harvest. 

In the spectral-temporal analysis of sugarcane harvested fields, it is important to 

consider the timing of the harvest event. Indeed, although the spectral dynamic of a field 

GH in May can be similar to that of a field GH in October, the spectral-temporal 

response surfaces of these fields will be different as a result of the different dates of the 

harvest event, since the spectral profile of a harvested field (BH or GH) changes over 

time (see Fig. 2.6). Thus, for labeling purposes, each BH or GH sugarcane field 

appearing on any of the 11 Landsat images (see Table 2.1) is labeled according to the 

image number in which the harvest event was observed. The thematic classes are 

summarized in Table 2.2. If the sugarcane field was not harvested, it is labeled as 

unharvested (UH). 
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Table 2.2 - Summary of the 23 thematic classes used in classifications. 

Description Label 

Pre-harvest burning identified on the image #1 BH01 

Pre-harvest burning identified on the image #2 BH02 

Pre-harvest burning identified on the image #3 BH03 

Pre-harvest burning identified on the image #4 BH04 

Pre-harvest burning identified on the image #5 BH05 

Pre-harvest burning identified on the image #6 BH06 

Pre-harvest burning identified on the image #7 BH07 

Pre-harvest burning identified on the image #8 BH08 

Pre-harvest burning identified on the image #9 BH09 

Pre-harvest burning identified on the image #10 BH10 

Pre-harvest burning identified on the image #11 BH11 

Green harvest identified on the image #1 GH01 

Green harvest identified on the image #2 GH02 

Green harvest identified on the image #3 GH03 

Green harvest identified on the image #4 GH04 

Green harvest identified on the image #5 GH05 

Green harvest identified on the image #6 GH06 

Green harvest identified on the image #7 GH07 

Green harvest identified on the image #8 GH08 

Green harvest identified on the image #9 GH09 

Green harvest identified on the image #10 GH10 

Green harvest identified on the image #11 GH11 

Unharvested sugarcane UH 

 

2.4.6. Reference map creation 

The reference map was populated using field data and visual interpretation of the 

Landsat sensor images (see Table 2.1) in two steps: (i) a thematic map with the classes 

sugarcane and nonsugarcane was generated using the method described by Rudorff et 

al. (2010) and evaluated by Adami et al. (2012), and (ii) the thematic map with these 

classes was then used to evaluate the harvested sugarcane (BH and GH), as described by 

Aguiar et al. (2011). This interpretation generated a thematic map with 22 classes of 

sugarcane harvested with BH and GH, depending on the image number in which the 

harvest event was visually observed. Moreover, the sugarcane fields that were not 
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harvested throughout the harvest season were classified as UH. Eventually, the 

reference map has 23 thematic classes, as described in Table 2.2. 

To improve the detail of the reference map to a spatial resolution of 5 m, a 

panchromatic SPOT-5 high-resolution geometry image acquired on October 7, 2002 

was used to delineate the sugarcane fields precisely. Finally, an erosion filter3 

(HARALICK et al., 1987) was applied to the reference map to discard border pixels, 

preventing both misclassification due to spectrally mixed pixels and underestimation of 

the classification accuracy due to positional uncertainty (FOODY, 2002). 

2.4.7. Multi-Coefficient Image testing 

It is expected that the MCI is able to represent the spectral-temporal information content 

of the 11 Landsat images (see Table 2.1) and, according to their spectral-temporal 

profile, indicates not only the harvest date but also whether the harvest practiced was 

BH or GH. 

Based on the 11 multitemporal-multispectral Landsat sensor images (see Table 2.1) 

used in this case study, the variables that define the coordinates of the STS points were: 

the image date acquisition (t = τ), given in day of year; the central wavelength of each 

Landsat spectral waveband4 (s = λ), given in micrometers; and the observed values 

given by the surface reflectance (r  = ρ), varying from 0 to 1. In order to standardize all 

variables to the same magnitude, the variables τ and λ were rescaled to a closed interval 

between 0 and 1, as suggested by Vieira (2000), before running STARS. 

The MCI is the result of STARS and depends on the model used to describe the 

spectral-temporal response surface for every pixel in the study area. The PTS model can 

be simple, by setting the degree to one (d = 1), and the complexity is increased as d 

increases. As discussed by Kutner et al. (2005), the degree must be correctly chosen to 

                                                      

 

3 At a spatial resolution of 5 m, an erosion filter with a window of 13 × 13 eliminates a border of two 
Landsat pixels. 
4 After the radiometric normalization procedure, the six corresponding spectral wavebands of all Landsat 
images were considered to having the ETM+ central wavelengths, since an ETM+ image was used as 
base in the radiometric normalization procedure. Thus, λ has six levels. The central wavelength values 
considered were presented by Chander et al. (2009). 
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produce a suitable response surface, i.e., neither too small to inadequately describe the 

surface nor too big to produce large anomalies in the surface. In order to evaluate 

different degrees for the PTS model and also differences between the orthonormal and 

the regular coefficients for both the PTS and CS models, we ran STARS with 20 

different scenarios and generated 20 MCIs, as summarized in Table 2.3. 

Table 2.3 - Summary of the 20 MCIs tested. 

MCI # Model d k Type of coeff. 

MCI 01 PTS 1 3 

Orthonormal 

MCI 02 PTS 2 6 

MCI 03 PTS 3 10 

MCI 04 PTS 4 15 

MCI 05 PTS 5 21 

MCI 06 PTS 6 28 

MCI 07 PTS 7 36 

MCI 08 PTS 8 45 

MCI 09 PTS 9 55 

MCI 10 CS - 66 

MCI 11 PTS 1 3 

Regular 

MCI 12 PTS 2 6 

MCI 13 PTS 3 10 

MCI 14 PTS 4 15 

MCI 15 PTS 5 21 

MCI 16 PTS 6 28 

MCI 17 PTS 7 36 

MCI 18 PTS 8 45 

MCI 19 PTS 9 55 

MCI 20 PTS - 66 
d: degree of polynomials; k: number of coefficients, given by Eq. 2.3. 

Finally, the k synthetic bands of each MCI, instead of the 66 Landsat multitemporal-

multispectral wavebands, were used as input attributes for classification. Three 

classifiers were tested, as described below. As recommended by Vieira (2000), each 

synthetic band of each MCI was individually rescaled to a closed interval between 0 and 

1 before classification to avoid significant differences in magnitude, which can affect 

the performance of some classifiers (TSO; MATHER, 2009). Since we compared 20 

MCIs as the input for three different classifiers, we generated 60 classification products. 
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2.4.8. Classification 

Three classification techniques were selected for comparison, enabling rigorous 

evaluation of the STARS method. First, instance-based classification was performed, 

which does not rely on a model to classify the data. Second, decision-tree classification 

was performed, which creates a simple interpretable model from the data, although it 

may be relatively inefficient. Third, neural-network classification was performed, which 

creates an accurate model, although it may not necessarily be easily interpretable (TAN 

et al., 2006). 

Instance-based classification is based on the instances themselves, instead of a model 

derived from labeled instances. This type of classifier uses the labeled data themselves 

to classify unlabeled data. Unlike most classification algorithms, there is no need for a 

preliminary step to create a model from the labeled data — unlabeled instances are 

compared with all labeled ones, and a majority vote determines the label for that 

instance, assigning a label to an instance based on the majority count of labels on 

nearby instances. (The algorithm is also known as k-nearest neighbors.) Usually, a 

limiting number (a small positive integer) is used; hence, only this number of labeled 

instances is considered when deciding a label. We set this value to 7 (hence, the 

classifier will be referred to as IB7). This algorithm is computationally more demanding 

than the other two classifiers, particularly if the labeled data set is very large, but it has 

the advantage of being able to deal with practically any kind of data distribution (AHA 

et al., 1991). 

Decision trees are classification algorithms that attempt to classify single instances of 

the data by comparing the values of their attributes with decision rules. These rules are 

stored in the classifier model, created in a preliminary step, which uses the labeled 

instances to create a set of hierarchical rules for posterior classification. The main 

advantage of this algorithm is that a decision-tree is easily interpretable by humans as 

long as it is kept simple (i.e., without too many rules). The main disadvantage of the 

algorithm is that in its canonical form, the rules correspond to orthogonal cuts or 

separations in the attribute space — if the classes on the data are orthogonally separable, 

the algorithm will yield accurate classification results and relatively simple trees, but 

otherwise, the rule set may become too large for interpretation, even with accurate 
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classification results. In this experiment, we used the J4.8 implementation (WITTEN et 

al., 2011) of the C4.5 algorithm (QUINLAN, 1993) for decision-tree classification. This 

classifier will be referred to as J48. 

The third classification method is based on a neural network trained with the back-

propagation algorithm (LOONEY, 1997). Neural networks are generally considered 

effective classifiers and, through the combination of linear classifiers, are able to 

classify nonlinear data distributions and even disjoint data distributions accurately, as 

long as there are enough neurons in the hidden layers to create these combinations. 

Neural networks must be trained in a preliminary step to classification. Training with 

this algorithm requires a set of labeled data and several passes through the algorithm, 

which may be time consuming depending on the neural-network architecture and on the 

number of labeled samples. In the classification step, the trained network is used to 

derive the classes for unlabeled samples. The main advantage of this algorithm is its 

ability to classify data with any type of distribution accurately; its main disadvantage is 

that the model (i.e., the trained neural network) is not easily interpretable, and the 

determination of the network architecture, particularly the number of neurons in the 

hidden layer, is somehow empirical (FAUSETT, 1993). We used a multilayer 

perceptron model, i.e., a feedforward neural network, and set the number of neurons in 

the hidden layer at 20. Thus, we will refer to this classifier as MLP20. 

In each classification, two thirds of the pixels in each class (see Table 2.2) were 

randomly selected from the reference map for the training of the classifier. The 

remaining third of the reference map pixels was set aside to be used for accuracy 

assessment. 

2.4.9. Accuracy assessment 

The accuracy assessment was conducted by comparing classified and reference data. 

The sample size was computed according to the multinomial statistical distribution, as 

recommended by Congalton and Green (2009). The sample size should be neither too 

small such that it could not detect a difference that is actually important nor too large 

such that tiny differences in accuracy are declared statistically significant (FOODY, 

2009) at a specific significance level (α). Thus, considering the 23 thematic classes (see 
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Table 2.2), α = 5% and the worst case (where one single class covers about 50% of the 

entire study area), the minimum sample size per class was computed as 41 pixels. 

Therefore, we used 50 pixels per class, which were randomly collected, for each 

classification based on the third of reference data not used for training the classifier. 

Statistical tests based on the standardized Gaussian distribution (Z distribution) were 

performed, as detailed by Congalton and Green (2009) – pag. 107, for testing the 

significance of and between the classifications (represented by their confusion matrices) 

using their estimates of kappa index (�̂) and kappa’s variance (�����̂�) (COHEN, 1960; 

HUDSON, 1987). The test of significance of a classification was performed under the 

hypotheses Ho: κ = 0 and Ha: κ ≠ 0, whereas the significance between the differences of 

two estimated kappa indices (pairwise test) was performed under the hypotheses 

Ho: (κ1 – κ2) = 0 and Ha: (κ1 – κ2) ≠ 0. 

For these two Z-tests, Ho is rejected if the calculated statistic zcalc ≥ zα/2, where α/2 is the 

confidence level of the two-tailed Z-test with degrees of freedom assumed to be infinity. 

Another interpretation can be made using the p-value related to zcalc: Ho is rejected for 

p-values smaller than α. 

In this paper, pairwise Z-tests were conducted to evaluate differences in accuracy 

values: (i) between classifications of MCIs based on orthonormal and regular 

coefficients, (ii) according to MCI complexity used as input for classifiers, and (iii) 

among classifiers. We assumed α = 5% (i.e., 0.05) for all Z-tests conducted. 

2.5. Results and discussion of STARS 

This section presents and discusses the results of applying STARS for sugarcane harvest 

classification. Examples of fitted spectral-temporal response surfaces will be presented 

for both PTS and CS models, followed by illustration of one of the 20 MCIs tested (see 

Table 2.3). Next, we will present the classifications of the STARS outputs (MCIs) and 

the accuracy assessment. 
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2.5.1. Spectral-temporal response surface 

The main rationale behind STARS is to use a spectral-temporal response surface model 

to describe the spectral behavior of pixels over time. To facilitate the comprehension of 

how a response surface model can be used in this context, example spectral-temporal 

response surfaces are illustrated for a pixel from a sugarcane field GH (GH04, see 

Table 2.2), using both the PTS model (see Fig. 2.7) and the CS model (see Fig. 2.8). 

 

Figure 2.7 – Adjusted spectral-temporal response surface, for a pixel from a sugarcane field GH 
(GH04, see Table 2.2), using the PTS model with d = 5 and considering the regular 
coefficients. 

 

Figure 2.8 – Fitted spectral-temporal response surface, for a pixel from a sugarcane field GH 
(GH04, see Table 2.2), using the CS model and considering the regular 
coefficients. 
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The response surface drawn in Fig. 2.7 relates to the PTS model with d = 5, considering 

the regular coefficients (i.e., it corresponds to the MCI 15 in Table 2.3). This degree was 

chosen because it produces a suitable response surface [i.e., d = 5 is neither too small to 

inadequately describe the surface nor too big to produce large anomalies in the surface 

(KUTNER et al., 2005)]. With d = 5, the PTS model has 21 coefficients (k = 21) and 

has the form 

 (2.17) 

The spectral-temporal profile of the chosen pixel (see Fig. 2.7) represents typical 

spectral behavior and change over time in response to the harvest event that can be 

observed at τ = 0.167 (image #4 of the Landsat images listed in Table 2.1). The straw 

left on the ground after the mechanical sugarcane harvest (see Fig. 2.3) causes a 

substantial increase in the reflectance of the SWIR wavebands (b5 and b7, see Fig. 2.6) 

(MELLO, 2009). After the harvest event, a gradual regrowth of the sugarcane field can 

be observed from τ = 0.167 to τ = 1. Apparently, there are two inconsistencies on the 

estimated reflectance surface shown in Fig. 2.7: (i) the maximum estimated reflectance 

is higher than expected, and (ii) there are negative reflectance values. These 

inconsistencies are likely associated with both the high degree of the polynomial and the 

distribution of the STS points along the wavelength axis since most of them are 

concentrated in the visible and NIR wavebands generating anomalies in the fitted 

surface. However, these apparent inconsistencies do not pose a problem for subsequent 

analysis since we are actually interested in the estimated coefficients and not in the 

estimated reflectance values. 

The CS model presents the number of coefficients (k) equal to n (i.e., k = n = 66 in this 

work). In Fig. 2.8, it can be noticed that the response surface described by the CS model 

is considerably sharper when compared with the surface described by the PTS model 

(see Fig. 2.7). It seems that the CS model can better describe the abrupt spectral change 

related to the harvest event than the PTS model; although even subtle changes in the 

estimated coefficients of the PTS model should be able to detect the harvest event, as 

will be described further. 
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2.5.2. Multi-Coefficient Image 

The two spectral-temporal response surfaces presented (see Figs. 2.7 and 2.8) 

correspond to only one pixel, chosen as an example. By fitting a response surface for 

every pixel in the study area, each estimated coefficient will compose a synthetic band 

of the MCI. In this paper, we tested 20 different MCIs by varying the model (PTS or 

CS), the degree for PTS model, and considering either the orthonormal or the regular 

coefficients (see Table 2.3). It is worth mentioning that, although actual specialized 

hardware systems can satisfy the time-critical constraints introduced by the large 

amounts of computations usually regarding remote sensing data processing (LEE et al., 

2011), it was noticed that the computational time demanded by STARS tended to 

increase with the complexity of the models. 

Fig. 2.9 presents the estimated orthonormal α0 synthetic band of the MCI 14, described 

in Table 2.3. Bright areas correspond to areas where the average spectral responses over 

time tend to be high, considering all the six spectral wavebands used. They can be 

associated with bare soil areas, which have average reflectance higher than vegetation 

(except in the NIR waveband) (PONZONI; SHIMABUKURO, 2007), or they can also 

be associated with areas where straw, after mechanical harvest, remained on the ground 

for a long period of time (AGUIAR et al., 2011; MELLO, 2009) (see Fig. 2.3). Thus, 

since an MCI presents not only the spectral information of the pixels in the study area 

but also their spectral behavior over time, a classification using an MCI as input can be 

considered a multitemporal-multispectral classification. Indeed, the MCI can be used for 

various purposes in the context of multitemporal analysis. For instance, band ratios can 

be used to create spectral-temporal indices or even land-cover change indices. 

Alternatively, synthetic bands can be used for visual interpretation or as input for land-

use and land-cover change models, etc. 
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Figure 2.9 – Orthonormal ��	 synthetic band of the MCI computed for the study area. 

2.5.3. Classifications 

The 20 MCIs summarized in Table 2.3 were classified using three classifiers: instance-

based, considering seven nearest neighbors (IB7); a decision-tree, using the J4.8 

implementation of the C4.5 algorithm (J48); and a multilayer perceptron model, which 

is a feedforward neural network, with 20 neurons in the hidden layer (MLP20). The 

classification accuracy values were measured using the estimations of both kappa (�̂) 

and kappa’s variance (����̂�) values, computed through the confusion matrix for each 

classification (see an example in Table 2.7). The �̂ and ����̂� for all 60 classifications are 

listed in Table 2.4. 

By observing Table 2.4, one can see that �̂ tends to increase as the complexity of the 

MCI increases from MCI 01 to MCI 10 (orthonormal coefficients) and from MCI 11 to 

MCI 20 (regular coefficients). The number of (input) attributes is defined by k in the 

classifications, and as presented in Table 2.3, k increases with the MCI complexity. 
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Indeed, the accuracy of the classifications tends to increase when MCI complexity 

increases due to the fact that more attributes are considered (TSO; MATHER, 2009). It 

can also be noticed in Table 2.4 that ����̂� decreases with increasing MCI complexity. 

Table 2.4 - Summary of the estimated kappa and kappa’s variance. 

MCI # 
IB7 J48 MLP20 

�̂ 
����̂� x 

103 �̂ 
����̂� x 

103 �̂ 
����̂� x 

103 

MCI 01 .5273 .234366 .5245 .234445 .3936 .225083 

MCI 02 .9227 .065034 .8264 .131529 .6236 .215125 

MCI 03 .9727 .024146 .9064 .077487 .8000 .146586 

MCI 04 .9864 .012235 .9409 .050672 .8773 .098368 

MCI 05 .9918 .007380 .9445 .047734 .9273 .061505 

MCI 06 .9918 .007380 .9573 .037251 .9527 .041017 

MCI 07 .9918 .007380 .9573 .037252 .9509 .042527 

MCI 08 .9973 .002473 .9618 .033439 .9573 .037246 

MCI 09 .9918 .007380 .9673 .028819 .9673 .028817 

MCI 10 .9945 .004933 .9718 .024928 .9591 .035730 

MCI 11 .5291 .234211 .5045 .235161 .3636 .217061 

MCI 12 .8236 .133161 .7482 .173685 .6182 .217496 

MCI 13 .9291 .060081 .8755 .099716 .8055 .143632 

MCI 14 .9527 .041029 .9009 .081524 .8327 .127162 

MCI 15 .9600 .034971 .9091 .075451 .9282 .060784 

MCI 16 .9673 .028819 .9064 .077476 .9400 .051401 

MCI 17 .9736 .023361 .9091 .067853 .9345 .055755 

MCI 18 .9809 .017038 .9227 .065048 .9482 .044762 

MCI 19 .9764 .021000 .9091 .075426 .9582 .036491 

MCI 20 .9900 .009004 .9500 .043273 .9691 .027266 

 

Fig. 2.10 presents the estimated kappa values (�̂) in a graph, which shows that the 

accuracy of the three classifiers significantly increases from MCI 01 to MCI 04 

(orthonormal coefficients) and from MCI 11 to MCI 14 (regular coefficients). Some 

further classification improvement is observed for the MPL20 classifier when using 

MCI 05 and particularly MCI 15. Classification with MCIs of greater complexity does 

not significantly increase classification accuracy. However, the Hughes phenomenon 

(HUGHES, 1968) was not observed, even for MCI 10 and MCI 20, which can be 

attributed to the satisfactory training sample size (ABEND; HARLEY JR., 1969). 
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Figure 2.10 – Estimated kappa values (�̂) for the three classifiers (IB7, J48, and MLP20) applied 
to the MCIs with (black) orthonormal and (gray) regular coefficients. 

In order to analyze the performance of STARS in terms of representing the full 

information content of the whole multitemporal-multispectral Landsat image data set, 

we performed each of the three classifiers on all 66 georeferenced surface reflectance 

wavebands (11 images, each with six spectral wavebands; see Table 2.1). The estimated 

kappa values of the three classifications were IB7 = 0.998, J48 = 0.975, and 

MLP20 = 0.961. In terms of the Z-test, the IB7 classification using 66 wavebands 

presented similar results for the classification using MCI from the MCI 06 on, for 

orthonormal coefficients (i.e., MCI 06, MCI 07, ..., MCI 10). The decision-tree classifier 

(J48) presented similar results for MCI 08, MCI 09, and MCI 10. Eventually, the neural 

network (MLP20) presented similar results from the MCI 06 on, for the orthonormal 

coefficients, and from MCI 17 on, for the regular ones (i.e., from MCI 17 to MCI 20). 

These results suggest that, depending on the choice of the model used to fit the spectral-

temporal response surfaces (e.g., PTS), STARS does not lead to a loss of information 

but represents and also synthesizes the spectral changes over time inside the synthetic 

bands of the MCI. 

To examine STARS in a wider context, its performance was also confronted with a 

classification considering the normalized difference vegetation index (NDVI) (ROUSE 
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JR et al., 1973). Eleven NDVI images were computed (i.e., one for each Landsat image, 

see Table 2.1) and used as input for the IB7 classifier. The kappa value, estimated at 

0.909, attested that this classification was statistically less accurate than the 

classifications using MCI from the MCI 03 on, for orthonormal coefficients. This result 

means that the ten synthetic bands of MCI 03 (see Table 2.3) performed considerably 

more effectively than the 11 NDVI images when used as input for the IB7 classifier. 

Indeed, the main disadvantage of using vegetation indices compared with the use of 

STARS is that vegetation indices usually account for only two or three wavebands, 

whereas STARS exploits all available spectral wavebands of the multitemporal data set. 

Furthermore, the IB7 classifier was also performed using as input attributes the results 

of a principal component analysis (PCA) (JOLLIFFE, 2002) conducted upon the 66 

georeferenced surface reflectance wavebands. The main characteristic of PCA is to 

capture and represent the great majority of variability in multilayer data (i.e., the useful 

information) within the first few principal components (PCs), and as such, it has been 

widely used for dimensionality reduction in remote sensing (FARRELL; 

MERSEREAU, 2005). We performed 66 classifications: the first classification using 

only the first PC, the second classification using the first two PCs, and so on, until the 

66th classification that used all 66 PCs. The kappa value considerably increased from 

the first classification until the classification using ten PCs and then stabilized at around 

0.995. According to Z-tests, this value represented similar performance to the IB7 

classifications using MCI 05 on, for orthonormal coefficients. Despite the high accuracy 

values presented in the classifications using PCA, the performance of PCA depends on 

the data distribution becoming worse when the data set is not normally distributed 

(JIMENEZ; LANDGREBE, 1999; LEE et al., 2010; YATA; AOSHIMA, 2009), 

whereas STARS is able to deal with practically any kind of data distribution. Moreover, 

some models used in STARS (e.g., PTS) minimize problems associated with aberrant or 

noisy data (VIEIRA, 2000), whereas PCA is significantly sensitive to outliers (YANG 

et al., 2008). The results suggest, therefore, that the choice of a suitable model (e.g., 

PTS with d = 5 and orthonormal coefficients) for STARS can reduce dimensionality 

representing the data variability in the synthetic bands of the MCI. Complementarily, 

the use of feature selection techniques can reduce k dramatically without decreasing 

kappa values (VIEIRA, 2000). 
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Other studies have explored alternative techniques to automate the process of mapping 

sugarcane harvest in Brazil. For instance, Mello (2009) compared the performance of 

the maximum likelihood classifier using a range of different input attributes, including 

fitted coefficients from spectral-temporal response surfaces, fraction images derived 

from linear mixture models (SHIMABUKURO; SMITH, 1991), and the full set of 

spectral wavebands from a multispectral-multitemporal Landsat data set. He concluded 

that the classification upon the fitted coefficients from spectral-temporal response 

surfaces showed better results in terms of accuracy than the classifications using the 

other input attributes. Mello et al. (2010b) also used fraction images derived from linear 

mixing models as input for the maximum likelihood classifier, and although a relatively 

high overall accuracy index was found (≈ 90%), the authors pointed out the gap for 

alternative methods to handle with spectral-temporal dynamics in face of the difficulty 

in defining suitable endmembers for the solution of mixing models. Similarly, Aguiar et 

al. (2009) used fraction images derived from linear mixing models in a decision-tree 

procedure to identify sugarcane harvest for the entire São Paulo State. Once again, 

although the work found a harvested area with 97.7% in accordance with the São Paulo 

State Environmental Secretary data for the 2006/2007 crop year, the authors found 

difficulties in defining suitable endmembers. 

Alternatively, El Hajj et al. (2009) proposed an approach using high spatial resolution 

multitemporal images to detect sugarcane harvest on Reunion Island, which is an 

overseas department of France in the Indian Ocean. However, the success of this 

method is highly dependent on the integration of crop model outputs with expert 

knowledge, such as the understanding of sugarcane physiology or cultural practices that 

can vary considerably over different regions or different timescales (e.g., crop growing 

and harvesting seasons) (XAVIER et al., 2006). This makes its uptake impractical 

where expert knowledge is limited, as is often the case. Indeed, despite the great overall 

potential of remote sensing for agricultural applications (VIEIRA, 2000) including 

sugarcane agriculture (ABDEL-RAHMAN; AHMED, 2008), there remains a 

considerable need for more robust and widely applicable models (LIN et al., 2009). 

In fact, the high kappa values presented in Table 2.4 and Fig. 2.10 indicated that 

STARS was effective in describing the spectral-temporal change associated with either 
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BH or GH. Aguiar et al. (2011) mapped sugarcane harvest practices during five crop 

years in São Paulo State, Brazil, to evaluate the “Green Ethanol” Protocol based on 

visual interpretation of Landsat-type images. In the last evaluated year (2010), about 4.7 

million ha of sugarcane were harvested, which means that visual interpretation of the 

harvest type is a very substantial undertaking, and an alternative automated procedure 

would assist the task significantly. STARS seems to offer such an alternative. 

In order to evaluate statistically the classification accuracy values, Z-tests for each 

single classification were performed, and these indicated that all classifications were 

significant and, therefore, different from a random classification, at α = 5%. 

Furthermore, pairwise Z-tests were performed to compare accuracy values of all 

classifications. Results are presented in the following three subsections. 

2.5.3.1. Orthonormal versus regular coefficients 

The results of the pairwise Z-tests comparing the accuracy of classifications based on 

orthonormal and regular coefficients are presented in Table 2.5. 

Table 2.5 – p-values of the pairwise Z-tests comparing the classifications based on orthonormal 
and regular coefficients. 

Orthonormal x Regular IB7 J48 MLP20 

MCI 01 x MCI 11 .933 .356 .154 

MCI 02 x MCI 12 ≈ 0 ≈ 0 .793 

MCI 03 x MCI 13 ≈ 0 .020 .749 

MCI 04 x MCI 14 ≈ 0 .001 .003 

MCI 05 x MCI 15 ≈ 0 .001 .934 

MCI 06 x MCI 16 ≈ 0 ≈ 0 .186 

MCI 07 x MCI 17 .001 ≈ 0 .099 

MCI 08 x MCI 18 ≈ 0 ≈ 0 .315 

MCI 09 x MCI 19 .004 ≈ 0 .261 

MCI 10 x MCI 20 .233 .008 .208 

Gray cell indicates significance at α = 5%. 

According to Tables 2.4 and 2.5, for the three classifiers tested, all classifications based 

on orthonormal coefficients presented accuracy values equal to or greater than 

classifications based on regular coefficients. In fact, orthonormal coefficients are 

expected to be better for distinguishing thematic classes since they tend to present little 
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or no correlation between themselves, whereas the regular coefficients are generally 

more correlated with each other (MATHER, 1976). The pairwise Z-test presented in 

Table 2.5 revealed that for the IB7 and J48 classifiers, the orthonormal coefficients from 

the PTS model actually performed better than the regular coefficients for all MCIs, 

except the simplest ones. Indeed, the simplest MCIs for orthonormal (MCI 01) and 

regular (MCI 11) coefficients were not statistically different in terms of accuracy for all 

three classifiers. For the MLP20 classifier, all comparisons indicated that they were not 

significantly different, except for MCI 04 and MCI 14 (p = 0.003). The most complex 

MCI (MCI 10 and MCI 20) from the CS model were significantly different in terms of 

accuracy only for the J48 classifier (p = 0.008) with the best results using the 

orthonormal coefficients. 

Considering that the model created by the neural-network classifier (MLP20) uses 

hyperplanes for the data separation (classification) and these hyperplanes can be in any 

possible direction (FAUSETT, 1993; LOONEY, 1997), its performance is not 

significantly improved using the orthonormal coefficients. For the decision-tree 

classifier (J48), which makes orthogonal separations (QUINLAN, 1993), the 

classification performance is improved when using orthonormal coefficients instead of 

regular ones. The performance observed for the instance-based classifier (IB7) can be 

attributed to the smaller variance of the classes when orthonormal coefficients are used. 

Thus, based on the results, we suggest the use of the orthonormal coefficients instead of 

the regular ones in order to improve classification performance and avoid both unstable 

computational solution (MATHER, 1976) and multicollinearity (KUTNER et al., 2005). 

2.5.3.2. Multi-Coefficient Image complexity 

Pairwise Z-tests were performed on each classification to evaluate differences in κ 

according to the complexity of the MCI used. The tests were conducted considering 

orthonormal or regular coefficients. 

Orthonormal:  For the classifications based on the ten MCIs with orthonormal 

coefficients (from MCI 01 to MCI 10), the IB7 presented no significant 

differences from the MCI 05 on. Moreover, the MCI 04 also presented good 
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accuracy but was slightly less accurate than MCI 08 (p = 0.004) and MCI 10 

(p = 0.048). No significant differences were found from MCI 06 on, for the 

J48 classifier. J48 also presented no differences among MCI from MCI 04 to 

MCI 07 and from MCI 05 to MCI 08. Eventually, the MLP20 classifier 

presented the same accuracy from MCI 06 on. 

Regular: For the ten MCIs with regular coefficients (from MCI 11 to MCI 20), the IB7 

presented the best results for MCI 18 and MCI 20 (p = 0.075). There were no 

significant differences detected among MCIs from MCI 14 to MCI 16; from 

MCI 15 to MCI 17; among MCI 16, MCI 17, and MCI 19; and also from 

MCI 17 to MCI 19. On the other hand, the J48 classifier presented equivalent 

accuracy from MCI 14 on for the PTS model. However, the best performance 

of the J48 was presented for the CS model (MCI 20) with �̂ = 0.9500. 

Moreover, there was no significant difference between MCI 13 and MCI 14, 

even though its Z-test p-value was close to 5% (p = 0.059). Eventually, the 

MLP20 presented the best accuracy for MCI 19 and MCI 20 (p = 0.172). 

In general, as shown in Fig. 2.10, accuracy values tended not to rise after a certain 

number of synthetic bands (k) were used as input for classifiers. In terms of 

classifications based on MCIs with orthonormal coefficients, the IB7 classifier, for 

example, did not improve accuracy from MCI 05 on (i.e., it presented the same accuracy 

for classifications based on MCIs with 21, 28, 36, 45, 55, and 66 synthetic bands). The 

same was observed for the J48 and MLP20 classifiers, which did not improve accuracy 

from MCI 06 on. These results show that STARS can also be used to reduce the 

dimensionality of multitemporal-multispectral data sets without significant loss of 

information. Moreover, for operational purposes, the results indicate that sugarcane 

harvest monitoring can be carried out using STARS with a PTS model and a suitable 

degree (e.g., MCI 05) that demands less computational processing than the more 

complex models. 
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2.5.3.3. Comparing classifiers 

Pairwise Z-tests were also performed comparing the accuracy values of the three 

classifiers for each MCI. The results for MCIs with orthonormal coefficients are 

presented in Table 2.6. 

Table 2.6 – p-values of the pairwise Z-tests comparing the accuracy values of the three 
classifiers for each MCI with orthonormal coefficients. 

MCI # IB7 x J48 IB7 x MLP20 J48 x MLP20 

MCI 01 .900 ≈ 0 ≈ 0 

MCI 02 ≈ 0 ≈ 0 ≈ 0 

MCI 03 ≈ 0 ≈ 0 ≈ 0 

MCI 04 ≈ 0 ≈ 0 .003 

MCI 05 ≈ 0 ≈ 0 .098 

MCI 06 ≈ 0 ≈ 0 .607 

MCI 07 ≈ 0 ≈ 0 .476 

MCI 08 ≈ 0 ≈ 0 .589 

MCI 09 ≈ 0 ≈ 0 ≈ 1 

MCI 10 ≈ 0 ≈ 0 .102 

Gray cell indicates significance at α = 5%. 

In terms of orthonormal coefficients, according to the pairwise Z-tests (see Table 2.6), 

IB7 and J48 presented the same accuracy only for the simplest MCI (MCI 01) with 

p = 0.900, but they were more accurate than MLP20. For all other MCIs with 

orthonormal coefficients, IB7 presented more accurate indices than J48 and MLP20 

classifiers. The best performance observed for the instance-based classifier (IB7) can be 

attributed to its ability to deal with practically any kind of data distribution and to the 

fact that it is based on the instances themselves, instead of a model derived from labeled 

instances. However, other parameters such as the k-nearest neighbor number should be 

tested to confirm the superiority of the instance-based classifier. 

The J48 classifier presented greater accuracy than MLP20 when classifications were 

performed with MCIs from MCI 01 to MCI 04. For the more complex MCIs with 

orthonormal coefficients, these two classifiers presented equivalent accuracy values. 

For all MCIs with regular coefficients, IB7 also presented stronger results than the other 

classifiers, except for the simplest one (MCI 11) where J48 presented accuracy 
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equivalent to IB7 (p = 0.257). J48 also presented accuracy values greater than MLP20 

for MCIs from MCI 11 to MCI 14, whereas MLP20 was more accurate than J48 for 

MCIs 16, 18, 19, and 20. For MCIs 15 and 17, these two classifiers presented equivalent 

accuracy values. 

According to the accuracy assessment analyses comparing classifications of MCIs based 

on orthonormal and regular coefficients, from the simplest to the most complex model, 

and evaluating three different classifiers, we suggest using MCI 05 with IB7 classifier 

for operational sugarcane harvest monitoring in Brazil with STARS. Table 2.7 shows 

the confusion matrix regarding the accuracy assessment of the classification by the IB7 

classifier running upon MCI 05. Both inclusion and omission errors were distributed 

over BH, GH, and UH classes, indicating that the classifier did not tend to misclassify 

any particular harvest type. The overall accuracy index of 99.22% confirms the high 

accuracy of this classification. Moreover, the ability to distinguish the harvest type (BH 

or GH) is even better if we consider the fact that in approximately 44% of 

(inclusion/omission error) cases, the classifier chose the right class in terms of harvest 

type (BH or GH) and only mistook the harvest date. 
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Table 2.7 – Confusion matrix for the classification by the IB7 classifier running upon MCI 05. 

 Reference 
 BH01 BH02 BH03 BH04 BH05 BH06 BH07 BH08 BH09 BH10 BH11 GH01 GH02 GH03 GH04 GH05 GH06 GH07 GH08 GH09 GH10 GH11 UH 

C
la

ss
ifi

ed
 

BH01 50                       
BH02  50                      
BH03   50           1          
BH04    50 1                   
BH05     47                   
BH06     1 50                 1 
BH07     1  50                 
BH08        49                
BH09         50               
BH10          50              
BH11           50            1 
GH01            50            
GH02             50           
GH03              49          
GH04               49         
GH05                50        
GH06                 50       
GH07                  50      
GH08                   49     
GH09        1           1 50    
GH10                     50   
GH11                      50  
UH               1        48 

Descriptions of the 23 thematic classes are presented in Table 2.2. Empty cells are equal to zero. 
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2.6. Conclusion to STARS 

The STARS method enables representation of the entire information content of a 

multitemporal-multispectral remote sensing data set in a single MCI. Using a case study 

of sugarcane harvest, it is shown that STARS holds considerable potential for 

representing spectral change over time of features on the Earth’s surface. Indeed, the 

example presented in this paper demonstrates that this method could be introduced to 

automate regional agricultural monitoring activities such as sugarcane harvest 

classification. 

Two models were tested in modeling spectral–temporal response surfaces. The PTS 

model presented smooth spectral-temporal surfaces that can be effective in describing 

gradual change on the Earth’s surface such as crop phenology. In contrast, the CS 

model presented sharper and more defined spectral-temporal surfaces, useful for 

characterizing abrupt change. However, our results showed that abrupt changes related 

with the sugarcane harvest event were well characterized also with the PTS model when 

a suitable degree was set. Two types of coefficients were tested, and of these, 

orthonormal coefficients performed more accurately than the regular ones when using 

MCI for classification purposes. 

Advantages of STARS include that the method can provide a description of features’ 

spectral change over time; that image data from different sensors with varying spectral 

wavebands and irregular time intervals can be used; that the method is robust, enabling 

different model options according to the application; and for some models (e.g., PTS), 

that it is economical, as the number of coefficients is smaller than the sum of the 

spectral wavebands. Moreover, the synthetic bands of the MCI can be used as input 

features for a range of operations, including image classification, visual interpretation, 

and creating spectral-temporal indices. 

The STARS algorithm has been implemented in R software (R CORE TEAM, 2013) 

and can be found at www.dsr.inpe.br/~mello. 
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3 BayNeRD: plausible reasoning from observations5 

Abstract: 

This paper describes the basis functioning and implementation of a computer-aided 

Bayesian Network (BN) method that is able to incorporate experts’ knowledge for the 

benefit of remote sensing applications and other raster data analyses: Bayesian Network 

for Raster Data (BayNeRD). Using a case study of soybean mapping in Mato Grosso 

State, Brazil, BayNeRD was tested to evaluate its capability to support the 

understanding of a complex phenomenon through plausible reasoning based on data 

observation. Observations made upon Crop Enhanced Index (CEI) values for the current 

and previous crop years, soil type, terrain slope and distance to the nearest road and 

water body were used to calculate the probability of soybean presence for the entire 

Mato Grosso State, showing strong adherence to the official data. CEI values were the 

most influencial variables in the calculated probability of soybean presence, stating the 

potential of remote sensing as a source of data. Moreover, the overall accuracy of over 

91% confirmed the high accuracy of the thematic map derived from the calculated 

probability values. BayNeRD allows the expert to model the relationship among several 

observed variables, outputs variable importance information, handles incomplete and 

disparate forms of data, and offers a basis for plausible reasoning from observations. 

The BayNeRD algorithm has been implemented in R software and can be found on 

internet. 

  

                                                      

 

5 This chapter is an adapted version of the paper: 
Mello, M. P.; Risso, J.; Atzberger, C.; Aplin, P.; Pebesma, E.; Vieira, C. A O.; Rudorff, B. F. T. Bayesian 
Network for Raster Data (BayNeRD): plausible reasoning from observations. Remote Sensing, 
(submitted). 
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3.1. Introduction to BayNeRD 

Understanding complex phenomena in the field of Earth observation sciences represents 

a considerable challenge for scientific analysis (DONNER et al., 2009; MELESSE et 

al., 2007). Regarding investigation of large scale phenomena, great progress has been 

achieved through recent advances in spaceborne remote sensing data acquisition (LI et 

al., 2008), together with the availability of high performance computing for remotely 

sensed data analysis (LEE et al., 2011). To Lu and Weng (2007) the most important 

factors driving the success of an inference based on remotely sensed data are: (i) the 

availability of high-quality observations (e.g., accurate imagery corrected for 

atmospheric effects and ancillary data such as topography, soil, road and census data); 

(ii) the design of a suitable analytical procedure; and (iii) the analyst’s skills and 

knowledge. However, some phenomena are often too complex to be investigated by 

conventional methods (RICHARDS, 2005), demanding new computer aided methods to 

help characterise phenomena through plausible reasoning inferences based on consistent 

data observations (i.e., evidence). 

Interactions of probabilities have been identified as the most promising way for a 

computer to effect plausible reasoning (JAYNES, 2003). The Bayes' theorem updates 

the knowledge (prior probability) of a specific event in the light of new/additional 

evidence (conditional probabilities), allowing one to have a plausible reasoning based 

on a degree of belief (posteriori probability) (McGRAYNE, 2011). Thus, observations 

made upon variables that are related to a particular phenomenon can be used to develop 

plausible reasoning about the phenomenon, its causes and consequences (JAYNES, 

2003). When the number of variables increases or even when the complexity of the 

interactions among the variables involved in a phenomenon rises, the Bayesian Network 

(BN) is a representation suited to models and handles such tasks (JENSEN; NIELSEN, 

2007; PEARL, 1988). 

Neapolitan (2003) defines BNs as graphical structures for representing the probabilistic 

relationship among a set of variables via a Directed Acyclic Graph (DAG), and for 

calculating probabilistic inference with those variables. BNs can also be defined as 

representational structures that are meant to organize one’s knowledge about a 

particular phenomenon into a coherent whole (DARWICHE, 2009). The advantages of 
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BNs are that they: (i) can deal with a large number of variables and can also handle 

incomplete data sets (i.e., missing data); (ii) can deal with both numeric and categorical 

data simultaneously; (iii) are able to incorporate experts’ knowledge via a participatory 

modelling procedure of causal relationships; and (iv) are easy to understand and 

visualize through DAGs (HECKERMAN, 1997; UUSITALO, 2007). Notwithstanding 

these advantages, BNs have rarely been used in the field of Earth sciences and remote 

sensing, and their potential is, as yet, largely unexploited (AGUILERA et al., 2011). 

Although researchers have made substantial advances in developing the theory and 

application of BNs (NEAPOLITAN, 2003), the actual use of these networks often 

remains a difficult and time-consuming task (AGUILERA et al., 2011). In the Earth 

sciences, where investigations commonly involve numerous layers of data (e.g., maps 

and images), analysis can be difficult because of the need to know both the relationships 

among the variables (i.e., conditional (in)dependences) and their probability functions. 

In addition, tasks can be time-consuming because they are typically performed 

manually. Until now, only a limited number of computer aided methods have been 

implemented. Therefore, there is potential for the use of probability theory as a basis for 

computer aided plausible reasoning, and BNs as a tool for representing and computing 

probabilistic beliefs in the field of Earth sciences (UUSITALO, 2007). Moreover, there 

is demand for the development and implementation of computer aided methods that 

offer a basis for Earth science researchers to understand and model phenomena through 

plausible reasoning inferences based on data observations (AGUILERA et al., 2011). 

The aim of this paper is to describe, implement and test a computer aided BN method 

that is able to incorporate experts’ knowledge for the benefit of remote sensing 

applications and other raster data analyses. The freely available algorithm is named 

Bayesian Networks for Raster Data (BayNeRD). Following development of the 

approach, BayNeRD was tested on a case study for soybean identification and mapping 

in Mato Grosso State, Brazil. The test enabled evaluation of the capability of BayNeRD 

to support the understanding of a complex phenomenon through plausible reasoning 

based on data observation. 
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3.2. Bayesian Networks 

A BN for a set of n variables consists of: (i) a network structure, graphically represented 

by a DAG with nodes and arcs, that encodes a set of conditional (in)dependence 

assertions about the variables; and (ii) a set of probability functions associated with each 

variable (NEAPOLITAN, 2003). We use upper-case letters (e.g., V1, Vn) to denote both 

a variable and its corresponding node, and the same but lower-case letters (e.g., v1, vn) to 

denote the state or value (defining a particular instantiation) of the variable. Then, the 

joint probability distribution for any particular instantiation of all n variables in a BN is 

given by 

���� = ��, … , �� = ��� = � ���� = �� 	|	Φ� = "��
�

�#�
 (3.1) 

where vi represents the instantiation of variable Vi and φi represents the instantiation of 

its parents Φi, with i varying from 1 to n. Parent variables are those whose instantiations 

directly influence other, descendent variables. The arcs (represented by arrows in the 

DAG) encode the conditional dependencies (i.e., which variables are parent/descendant 

of other variables) (NEAPOLITAN, 2003; PEARL, 1988).The joint probability of any 

instantiation of all the variables in a BN can be computed as the product of only n 

probabilities. Thus, we can determine any probability of the form 

����|�$, … , ��� (3.2) 

where Vi are sets of variables with known values (vi – i.e., instantiated variables). This 

ability to compute posterior probabilities given some evidence is called inference. In the 

case of using Eq. (3.2) for inferences about certain phenomena using BayNeRD, we 

named the variable that represents the phenomenon as the target variable and the 

variables that can be used to describe an outline of the phenomenon as context variables 

(i.e., those variables that are somehow related to the phenomenon). 

To illustrate the concept, suppose we are interested in inferring soybean occurrence 

based on observations of other variables. It is well known that soybean plantations have 

certain peculiarities (GARRET et al., 2013), such as: (i) it is preferably not sown in 
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areas with steep terrain slope because mechanization may be hindered, and (ii) it is 

preferably sown in soils that are apt for agricultural cultivation. Then, soybean 

occurrence (S) is the target variable with a Binomial statistical distribution and can be 

represented by a thematic map with the classes soybean and non-soybean, that mean 

soybean presence (S = 1) and soybean absence (S = 0), respectively. On the other hand, 

terrain slope (T) and soil aptitude (A) could be, in our example, two context variables. 

Since we are interested to infer about S, in this example, Eq. (3.2) becomes 

��%|&, '�. (3.3) 

Indeed, T and A directly influence S and so are said to be parents of S. Moreover, since 

soil formation processes are strongly influenced by terrain slope (PARK et al., 2001), T 

also influences A and, therefore, T is also a parent of A. These (in)dependence 

relationships among the variables are represented by a DAG as shown in Fig. 3.1. 

 

Figure 3.1 – Directed Acyclic Graph (DAG) representing a hypothetical BN graphical model 
where the target variable soybean occurrence (S) is influenced by two context 
variables: terrain slope (T) and soil aptitude (A). Since soil formation processes 
are strongly influenced by terrain slope, T is also parent of A. Variables are 
represented by nodes and dependences are represented by arcs between pairwise 
nodes. 

The representation of conditional (in)dependencies is the essential function of BNs. For 

each node in a BN structure, there is a conditional-probability function that relates this 

node to its immediate parents. If a node has no parents (e.g., T) then a prior-probability 

function is specified (JENSEN; NIELSEN, 2007). Eventually, once all probability 

functions are specified, it is possible to compute the probability of soybean presence 

(S = 1) in a certain area based on the observed values for both T and A in the same area. 

In practical terms, the definition of these probability functions is often the most 

complicated part of BN modelling. However, the empirical Bayesian approach suggests 
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that the functions can be defined based on observations, i.e., from the data (COOPER; 

HERSKOVITS, 1992). Mello et al. (2010a) proposed use of pixel counting in 

discretized variables to compute probability functions in a BN when employing raster 

data (described further). 

Aware of the great demand for implemented computer algorithms to help handle and 

understand phenomena in the field of Earth observation science, we implemented 

BayNeRD in R software (R CORE TEAM, 2013). The algorithm provides researchers a 

means of modelling any phenomenon of interest, whereby plausible reasoning 

inferences are made based on observations stored in raster data format. 

3.3. Framework of the implemented BayNeRD algorithm in R software 

R software was used to implement BayNeRD because it is a high-level language and 

environment for data analysis and graphics. It is growing in popularity and uptake, and 

is freely available for the research community (CRAWLEY, 2007). Furthermore, 

among all packages already implemented in R software, there are several developed for 

both handling spatial data (BIVAND et al., 2008) and computing Bayesian analysis 

(ALBERT, 2009), especially catnet (BALOV; SALZMAN, 2011) which was designed 

for categorical BN. 

The BayNeRD algorithm handles data in the GeoTIFF format, which has been widely 

used to represent raster data with geographical coordinates. For use in BayNeRD all 

raster data (i.e. one GeoTIFF representing each variable) must represent the same 

geographic area. Each GeoTIFF corresponds to a variable (node) used in the BN model. 

These variables and their (in)dependence relations are used to compute the probability 

functions. 

3.3.1. Target variable 

The variable which directly represent the phenomenon is called the target variable. A 

GeoTIFF with data representing the target variable as reference data for training must 

be provided. It is later used in the definition of the probability functions. The GeoTIFF 

representing the target variable usually has four labels representing the following 

thematic classes: (i) target presence observed; (ii) target absence observed; (iii) missing 
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data, i.e., no observations were made; and (iv) pixels outside the study area. The latter is 

simply used to mask out any pixels that are outside the study area from any of the raster 

data layers to be used in BayNeRD. Although reference data for training may contain 

more than these four labels, it must have at least two: (i) and (ii). Thus, the target 

variable, represented in the general model as Y, is expected to have a Binomial 

statistical distribution that can be instantiated (Y = y) with y assuming either 1 for the 

target presence or 0 for the target absence. 

3.3.2. Context variables 

The context variables are those that exhibit any kind of relationship with the target 

variable (such as terrain slope and soil aptitude, as previously discussed). Moreover 

context variables may exhibit relationships among themselves, such as the terrain slope 

influencing the soil aptitude due to the influence of slope in soil formation processes 

(PARK et al., 2001). The context variables may contain any sort of observations such as 

numerical values (e.g., terrain slope given in percentage) or categorical data (e.g., 

thematic classes representing soil aptitude for agriculture cultivation). Moreover, the 

context variables may also contain missing data. 

One of the main difficulties of using BNs for real problems is the definition of the 

probability functions of the model (COOPER; HERSKOVITS, 1992). Therefore 

BayNeRD was developed to interact with the user to define, through discretization 

processes, the probability functions of the model based on both observed data and users’ 

knowledge about the phenomenon of interest. Discretization is the process of 

representing (approximating) the observed values of a variable using discrete quantities 

(e.g., intervals, such as in the process of drawing a histogram). 

After the target variable has been entered as reference data for training and the context 

variables have been read, the user will be able to design the BN graphical model. 

3.3.3. Designing the Bayesian Network graphical model 

To design the BN graphical model the user is asked about the (in)dependence relations 

among all variables read (i.e., both target and context variables). Since the dependencies 

are represented by arcs in a DAG, BayNeRD asks whether an arc exists between 



54 

 

pairwise variables. For example, if the terrain slope (T) influences soil aptitude (A), and 

both T and A influence soybean occurrence (S), there will be an arc from T to A, an arc 

from T to S and another arc from A to S (see Fig. 3.1).Once the graphical representation 

of the BN model is defined stating the variables and their (in)dependence relations, 

BayNeRD is able to compute the probability functions, which is done based on pixel 

counting in discretized variables (MELLO et al., 2010a). 

3.3.4. Discretization and probability functions 

The discretization divides the range of the observed values for a variable into intervals 

and codes the values in the variable according to which interval they belong. In 

BayNeRD the discretization is based on choosing the number of intervals defined for 

each context variable and can be computed following three implemented criteria: (i) 

equidistant intervals, where each interval has the same width; (ii) quantiles, where each 

interval tends to have the same number of elements (i.e., pixels); and (iii) manually 

defined intervals, where the user defines the upper and lower limits of each interval. 

The discretization will have an impact on the computed probability functions. These 

probabilities are computed through pixel counting according to both the (in)dependence 

relations defined in the BN graphical model and the intervals defined in the 

discretization processes. Indeed, both the definition of the BN graphical model and the 

discretization processes enable users to add their knowledge about the phenomenon into 

the model. The more a data set is accurate and a user is skilled in defining both BN 

graphical model and interval limits during discretization processes, the more the data-

based probability functions computed are representative of the real probability functions 

(MELLO et al., 2010a). 

Let us suppose that the terrain slope (T), which does not have parents in the designed 

BN model represented in Fig. 3.1, was discretized using four equidistant intervals 

between 0 and 100%. By dividing the number of pixels with values lower than 25% by 

the total number of pixels observed for the study area one can compute the probability 

for the first interval of the discretized T. The probabilities for the remaining intervals of 

the discretized T are computed by pixel counting as described above and the 

probabilities for all intervals must sum to 1. Indeed, such as for T, for all variables that 
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do not have parents in a designed BN these probabilities define the prior-probability 

function. In the case of variables that have parents, such as the soil aptitude (A), which 

is a descendent of T (Fig. 3.1), BayNeRD uses the intervals defined for T and the ones 

defined for A to compute the conditional probability function for A in the BN model, 

also based on pixel counting (MELLO et al., 2010a). 

The user should be sufficiently expert to define suitable discrete intervals for each 

context variable so that all scenarios (i.e. combination of parents’ and variable’s 

intervals) have representative data to compute probability functions, where a minimum 

user-defined quantity of pixels is considered as a representative number. The process of 

computing the probability functions of the model is called training, when BayNeRD 

defines the probability functions based on the observed values from the data (i.e., by 

counting pixels). Using values of probability for plausible reasoning, BNs are able to 

infer based on evidence (observed data). Indeed, once BayNeRD is trained, it is able to 

answer the question: “what is the probability of target presence (e.g., soybean), given 

the observed values for the context variables (e.g., terrain slope and soil aptitude)?”. 

When the probability that answers this question is calculated for every pixel in the 

entire study area, a Probability Image (PI) is formed. 

3.3.5. Computing the Probability Image 

The PI consists of a raster data (i.e., a matrix matching the same coordinates of the 

entered reference data for training) where each pixel contains the probability of 

presence of the target given the values observed (instantiations) for the input variables, 

i.e., 

��) = 1|�� = ��, … , �� = ��� (3.4) 

If any context variable presents missing data for any specific pixel in the study area, it is 

considered as “unobserved” in the model but Eq. (3.4) is computed anyway. It is also 

possible to find P(Y = 1) for pixels where no observation was made for any context 

variable. In this case, the computed probability will be the marginal probability for Y 

when Y = 1. 
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BayNeRD also allows the user to quantify the influence of each context variable on the 

probabilities computed for the target variable. This is done through the 

Kullback-Leibler (KL) divergence, which is a non-symmetric measure of the difference 

between two probability distributions (KULLBACK; LEIBLER, 1951). Thus, it is 

possible to measure how much V1, V2, … and Vn individually influence the probability 

computed for Y by computing KL divergences between conditional and marginal 

probabilities in the BN model. 

The main result of BayNeRD is the PI and it can be used in several applications. For 

example, the PI can be used to generate a thematic map with classes target and non-

target (e.g., soybean and non-soybean) just by slicing the PI using a limiting probability 

value named the Target Probability Value (TPV). Thus, by setting TPV at 50%, for 

instance, all pixels with values equal to or greater than 0.5 in the PI will be labelled as 

target and the remaining pixels (with values smaller than 0.5) will be labelled as non-

target. But what if the best TPV was 70% instead of 50%? Or even 80%? 

3.3.6. Selecting the Target Probability Value 

Apart from a user-defined value, six criteria are implemented in BayNeRD to select the 

TPV which best meets a chosen criterion, making use of available reference information 

(i.e., a reference data for testing). These implemented criteria are: (i) nearest 100% 

sensitivity and 100% specificity point (ZWEIG; CAMPBELL, 1993) (for a description 

of these two indices see Altman and Bland (1994)); (ii) minimum difference between 

sensitivity and specificity; (iii) highest overall accuracy index; (iv) highest kappa index 

(COHEN, 1960; HUDSON, 1987); (v) most similar area (number of pixels) matching 

the reference data for testing; and (vi) minimum difference between omission and 

commission errors (CONGALTON; GREEN, 2009). 

3.4. Case study of soybean mapping in Brazil: Material and research methods 

The case study involves soybean identification and mapping in Mato Grosso, which is a 

major Brazilian soybean producer (about 30% of the total domestic production) and an 

important global hub for tropical agricultural production (CONAB, 2013). Mato Grosso 

State is located in the Southwest of Legal Brazilian Amazon encompassing an area 
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around 900,000 km2 (BRASIL, 2002). Fig. 3.2 shows the location of Mato Grosso State, 

highlighting thirty 30 x 30 km plots (and the Landsat path/row covering them) of 

reference data produced by Epiphanio et al. (2010) for the crop year 2005/2006 (i.e., 

from August 2005 to July 2006) using visual interpretation of Landsat-5/TM images 

and field data. Additional data such as indigenous lands, conservation units, mapped 

forests and floodplains were used to mask out areas of no interest for mapping soybean 

(as will be described further). 

 

Figure 3.2 – Study area corresponding to the Mato Grosso State, Brazil. The analysis was only 
performed in areas that were not masked out. 

Although Brazil is the second largest producer of soybean worldwide (FAO, 2012), the 

country does not have a systematic nationwide mapping system for this oilseed. 

Tabulated agricultural statistics at municipality level are only released with a delay of 

about two years after harvest. The absence of timely and spatial data restricts 

investigations related to crop monitoring and forecast. It also hinders the monitoring of 

the possible spread of this crop into new, sometimes environmentally-sensitive, areas. 

As such, there is demand for the use of satellite sensor images as an accurate, efficient, 

timely and cost-effective way to monitor agricultural crops (ATZBERGER, 2013). 

Several studies have demonstrated the value of Landsat-like images to monitor 
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agricultural crops in Brazil using visual interpretation (RIZZI; RUDORFF, 2005; 

RUDORFF et al., 2010) or even automatically (MELLO et al., 2013b; VIEIRA et al., 

2012). However, these methods have certain constraints, notably the limited number of 

cloud-free images that are routinely acquired during the crop cycle (ASNER, 2001; 

SANO et al., 2007). Alternatively, multitemporal approaches using Moderate 

Resolution Imaging Spectroradiometer (MODIS) time series images have been 

successfully used to monitor soybean plantations in tropical regions such as Mato 

Grosso, since the 1-2 day temporal resolution of MODIS minimizes the constraints 

related to cloud coverage on satellite sensor images (ARVOR et al., 2011; MACEDO et 

al., 2012; MORTON et al., 2006). 

Besides remotely sensed spectral and temporal information, several other context 

variables are closely related with soybean occurrence in a given field (e.g., soil type and 

infrastructure facilities) (GARRETT et al., 2013). In the present study, this information 

is combined within a BN structure to optimize soybean identification and mapping. 

Fig. 3.3 shows a flowchart summarising the research material and methods employed in 

the soybean mapping case study application of BayNeRD. 

 

Figure 3.3 – Summary of the procedures used in the case study of applying BayNeRD to 
identify soybean plantations in Mato Grosso State, Brazil. Table 3.1 provides a 
description of the variables used. 
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In summary, six context variables and a reference thematic map were used as inputs in 

BayNeRD, where a BN model was defined based on experts’ knowledge. Probability 

functions were computed based on pixel counting of discretized variables, allowing 

BayNeRD to compute the PI, which was eventually used to produce a thematic map of 

soybean occurrence over the study area. This thematic map was then assessed using 

reference data. The following subsections describe the research materials and methods 

in detail. 

3.4.1. Variables 

All variables used in this case study, each represented by a raster GeoTIFF, were 

resampled to match the grid of the MODIS vegetation indices product (MOD13Q1), 

with a nominal spatial resolution of 250 x 250 m (JUSTICE et al., 2002). 

Next, two classes of variables were entered: 

a) Target variable – soybean occurrence (S) corresponding to the studied 

phenomenon, represented by a thematic map with four classes for the crop 

year 2005/2006: (i) target presence observed (i.e., soybean); (ii) target 

absence observed (i.e., non-soybean); (iii) missing data (i.e., no observations); 

and (iv) pixels outside the study area. This thematic map, produced by 

Epiphanio et al. (2010), was used as a reference in this study. In the 

BayNeRD modelling, S assumes a Binomial distribution with S = s, where 

s = 1 for soybean presence and s = 0 for soybean absence. Two thirds of the 

pixels in each of the thematic class soybean and non-soybean were randomly 

selected from the reference map to compose the reference data for training. 

The remaining third of the reference map pixels was set aside to be used for 

accuracy assessment (reference data for testing). 

b) Context variables – the selected and available variables to compose the model 

are listed in Table 3.1. From expert knowledge it is known that each context 

variable influences soybean occurrence (S). 
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Table 3.1 – Summary of the six context variables used in the soybean mapping case study. 

Variable Description 

C CEI* value in the Current crop year (2005/2006) 

L CEI* value in the Last crop year (2004/2005) 

A Soil Aptitude 

T Terrain slope (given in %) 

W Distance to the nearest Water body (given in Km) 

R Distance to the nearest Road (given in Km) 
*Crop Enhancement Index (RIZZI et al., 2009). 

As a remote sensing input, the Crop Enhancement Index [CEI (RIZZI et al., 2009)] was 

used. CEI was designed to capture the high seasonality of annual crops, particularly 

soybean. It uses the Enhanced Vegetation Index [EVI (HUETE et al., 2002)] values 

derived from MODIS images observed at two specific periods of the soybean crop 

calendar in the study area. CEI values may vary between [-1,+1] and are calculated, for 

each pixel, as 

+,- = 100
./0,�- − .23,�-

./0,�- + .23,�- + 200
 (3.5) 

where MinEVI is the minimum observed EVI value between June and August or prior to 

the beginning of the crop growing season, when EVI values are close to the minimum 

for annual crops; and MaxEVI is the maximum EVI value observed at the full soybean 

development period, occurring between December (earliest sowing) and March (latest 

sowing) when EVI values are at their highest for soybean (ARVOR et al., 2011; RIZZI 

et al., 2009). 

In BayNeRD we used CEI values in the current crop year (C variable) for 2005/2006. It 

is expected that soybean presence leads to high values of CEI (RIZZI et al., 2009). 

Therefore, since soybean occurrence influences the CEI value for the current crop year, 

S should be a parent of C in the BN model. In addition we also used CEI values in the 

last crop year (i.e., 2004/2005 – L variable). We used L because soybean plantations in 

Mato Grosso present spatially persistent characteristics over time, i.e., if soybean is 

sown on a given plot in a given year it is likely that soybean will be sown on the same 

plot in the following crop year (RISSO, 2013). Thus L should be a parent of S in the BN 

model. 
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Soybean occurrence is also influenced by soil type (RISSO, 2013), represented here by 

the variable soil aptitude (A). To set the soil aptitude for soybean production, we used a 

thematic soil map (1:250,000 scale) provided by the Secretariat of Planning and 

Coordination of Mato Grosso State (SEPLAN-MT, 2012). This map was produced 

within the scope of an ecological-economic zoning project, according to the Brazilian 

System of Soil Classification (PALMIERE et al., 2002; SANTOS et al., 2006). 

Originally, the soil map contained 26 classes (types of soil), which were pooled into two 

aptitude classes, low and high, defined by skilled soil experts according to soil 

properties such as soil composition, water holding capacity and fertility. The low 

aptitude class encompasses the following soils: rock outcrops, gleysols, lithic soils, 

quartz sands, planosols, plinthosols, podzolic soils, solonetzic soils, alluvial soils, 

cambisols, concretionary soils, organic soils and brunizem soils. On the other hand, the 

high aptitude class encompasses ultisols and oxisols (SANTOS et al., 2006). Hence, 

since A influences S, A is a parent of S in the BN model. 

The fourth context variable used was the terrain slope (T). To compute T we used 

altitude data derived from the Shuttle Radar Topography Mission [SRTM (RABUS et 

al., 2003)]. T is critical in defining which fields are suitable for soybean production 

since it defines suitable areas for large scale mechanized agriculture such as soybean 

cultivation (SEERUTTUN; CROSSLEY, 1997; SHAXSON, 1999). Furthermore, land’s 

erosive potential increases as slope increases, particularly if soil tilling practices are 

employed. Therefore T is a parent of S in the BN model. It is also known that T has a 

noticeable influence on soil formation (PARK et al., 2001); thus T is also a parent of A 

in the BN model. 

Another variable that influences soybean occurrence is the distance to the nearest water 

body (W), computed using the hydrographic network provided by the Brazilian 

Electricity Sector (ANEEL, 2012). This information includes the major river courses in 

Brazil, at a 1:1,000,000 scale. W was incorporated in this model for several reasons: (i) 

the rainfall pattern in Mato Grosso makes irrigation unnecessary, leading farmers to sow 

soybean preferably not close to river edges; (ii) Brazilian law safeguards preservation of 

natural vegetation in a buffer area around water bodies – up to 500 m, depending on the 

width of the water body, based on Brazilian Forest code in force at this evaluation time 
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(SILVA et al., 2012); and (iii) short distances to water bodies are generally associated 

with higher terrain slopes, hampering the use of these areas for soybean production. 

Thus, we expect that the probability of soybean presence increases as the distance to 

water body increases. Therefore, W is both a parent of S in the BN model, since soybean 

occurrence is direct influenced by W, and a descendent of T, since terrain slope directly 

influences the path of flowing water channels. 

The distance to the nearest road (R) was computed using the road map, provided by the 

Brazilian Institute of Geography and Statistics (IBGE, 2012a). This information 

includes the paved and unpaved road network for the entire country at a 1:5,000,000 

scale. A close relationship between soybean occurrence and distance to roads is 

expected because of the logistical issues involved in accessing agricultural areas and 

transporting crops. That is, soybean production is expected to occur relatively close to 

major roads (FEARNSIDE, 2002). Therefore, R is a parent of S in the BN model. 

Finally, areas that have no realistic role for commercial soybean production or are 

safeguarded by environmental protection laws in Mato Grosso were masked out. These 

include: (i) natural forest, identified from the Amazon Deforestation Monitoring Project 

(PRODES), carried out by INPE (2013) using the methodology described by 

Shimabukuro et al. (1998); (ii) floodplains, identified from SEPLAN-MT (2012); (iii) 

indigenous lands, identified from Brazil’s National Indian Foundation (FUNAI, 2013); 

and (iv) protected areas (also called Conservation Units), which are those without 

authorization for agricultural exploration, identified from the Brazilian Ministry of the 

Environment (MMA, 2013). These layers were overlaid to create a composite mask and 

all masked areas were omitted from analysis (see Fig. 3.2). Since some masked areas 

are suitable for soybean production in terms of physical properties, this step is important 

to minimize compromising the definition of the probability functions when counting 

pixels. 

3.4.2. Bayesian Network model 

Given the (in)dependence relationships among the context variables and between each 

context variable and the target variable (S) we designed a BN graphical model using a 

DAG (JENSEN; NIELSEN, 2007). Fig. 3.4 shows the designed model, where each 
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node represents a variable and arcs between pairwise variables represent their 

dependence relationships. 

 

Figure 3.4 – Directed Acyclic Graph (DAG) encoding assertions of conditional (in)dependence 
among the variables and representing the designed Bayesian Network graphical 
model for the case study of soybean occurrence in Mato Grosso. 

3.4.3. Discretization and probability functions 

The first step after the definition of the BN graphical model is the discretization of 

continuous variables. The number of intervals must be appropriately chosen, i.e., neither 

too few to incorrectly describe the variable in the context of the phenomenon of interest 

nor too many to compromise the definition of the probability function associated to the 

variable and its descendants. 

Regarding T, it is well known that soybean is preferably not sown on steep terrain 

slopes because mechanized cultivation processes may be hindered. Instead, soybean is 

usually sown in flat plateau areas with terrain slope < 6% (RISSO, 2013). A slope of 

12% is considered the upper limit for mechanized cultivation (SHAXSON, 1999). 

Based on this knowledge, T was discretized into three intervals: one for slopes smaller 

than 6%, another for slopes equal to or larger than 6% but smaller than 12%, and the 

last for slopes equal to or larger than 12%. Since T has no parents, a prior probability 

function is defined. By pixel counting, BayNeRD computed the prior probability 

function for T, considering the defined intervals, i.e., P(-∞ ≤ T = t < 0.06), 
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P(0.06 ≤ T = t < 0.12) and P(0.12 ≤ T = t < +∞). T is a parent of S, so the probabilities of 

soybean occurrence given each defined interval for T were also computed, i.e., 

P(S = s | -∞ ≤ T = t < 0.06), P(S = s | 0.06 ≤ T = t < 0.12) and P(S = s | 0.12 ≤ T = t < +∞). 

Fig. 3.5 shows a histogram of the discretized T variable and computed probabilities. 

 

Figure 3.5 – Discretization of context variable terrain slope (T) into three intervals. The 
percentage at the top of each bar represents the probability of finding a pixel 
within the defined interval limits, e.g. P(-∞ ≤ T = t < 0.06) = 82.9%; and the 
percentage at the bottom of each bar represents the conditional probability of 
soybean presence given the defined interval limits for T, e.g. 
P(S = 1 | -∞ ≤ T = t < 0.06) = 53.6%. 

Fig. 3.5 shows that almost 83% of the analysed area consists of flat areas, i.e., terrain 

slope smaller than 6%. Additionally, it shows that finding soybean plantations in these 

flat areas (probability of 53.6%) is more likely than in areas where slope is ≥ 12% 

(probability of 1.6%). 

CEI (C and L) observations are also critical variables for this case study as they are 

closely related to soybean occurrence (RIZZI et al., 2009).Fig. 3.6a shows a histogram 

of L values in the analysed area with bimodal appearance. CEI values less than 0.2 are 

usually associated with targets with low (e.g., forest) or medium seasonality (e.g., 

Cerrado or pasture) (GALFORD et al., 2008; RISSO et al., 2012). On the other hand, 

CEI values greater than 0.2 are strongly associated with high seasonality targets such as 
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annual crops like soybean (RUDORFF et al., 2011, 2012). Based on this knowledge, we 

empirically defined four intervals for L, as presented in Fig. 3.6b. 

  

(a) (b) 

Figure 3.6 – (a) Histogram of context variable CEI value in the last crop year (L); (b) 
discretization of L into four intervals. The percentage at the top of each bar 
represents the probability of finding a pixel within the defined interval limits, 
e.g., P(0.26 ≤ L = l < +∞) = 7.0%; and the percentage at the bottom of each bar 
represents the conditional probability of soybean presence given the defined 
interval limits for L, e.g.,P(S = 1 | 0.26 ≤ L = l < +∞) = 95.4%. 

Indeed, Fig. 3.6b demonstrates the strong relationship between S and L. Although only 

11.6% (4.6 + 7.0) of Mato Grosso State presented CEI values equal to or greater than 

0.2 in the 2004/2005 crop year, the probability of finding soybean plantations in these 

areas in the 2005/2006 crop year is considerably greater than in the remaining part of 

the State. 

Fig. 3.7 shows a histogram of C values with the same bimodal appearance as discussed 

for L, and a boxplot, where a strong relationship between soybean presence and C 

greater than 0.2 is also evident. Indeed, the relationship between C and S is similar to 

that between L and S because most soybean plantations of crop year 2005/2006 were 

sown over the same areas of crop year 2004/2005 due to the spatially persistent 

characteristic of soybean crop over time in Mato Grosso (RISSO, 2013). Thus, for C we 

used the same interval limits defined for L. 
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Figure 3.7 – Histogram of CEI values observed in the current crop year (C) and boxplot 
showing the strong relationship between soybean presence (S = 1) and C greater 
than 0.2. 

As with T, L and C, we manually defined the upper and lower limits for the remaining 

context variables, as stated in Table 3.2. The main advantage of manual definition of 

interval limits is that it optimizes experts’ knowledge during the discretization process. 

Table 3.2 – Summary of the intervals limits defined for each of the six context variables, 
described in Table 3.1. 

Interval # C L A T W R 
1 [-∞ ; 0.05) [-∞ ; 0.05) low [-∞ ; 0.06) [-∞ ; 0.5) [-∞ ; 3.0) 

2 [0.05 ; 0.20) [0.05 ; 0.20) high [0.06 ; 0.12) [0.5 ; 1.0) [3.0 ; 8.0) 

3 [0.20 ; 0.26) [0.20 ; 0.26)  [0.12 ; +∞) [1.0 ; 2.0) [8.0 ; +∞) 

4 [0.26 ; +∞) [0.26 ; +∞)   [2.0 ; +∞)  

# of intervals 4 4 2 3 4 3 

Intervals are closed on the left and opened on the right, as denoted by [ and ), respectively. 

3.4.4. Probability Image 

Based on the designed BN model and the probability functions defined, BayNeRD 

computes, for each pixel in the study area, the probability of soybean presence given 

observations made on the context variables, i.e., 

��% = 1|+ = 6, 7 = 8, ' = /, & = 9, : = ;, < = =� (3.6) 
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where lower-case letters denote a state or value (defining a particular instantiation) of 

the respective discretized variable. The resulting PI was assessed visually and based on 

official data (i.e., from IBGE). The PI was also used to generate thematic maps that 

were statistically assessed, based on the reference data for testing, to determine the 

effectiveness of BayNeRD for characterising soybean cultivation. 

3.5. Results and discussion of BayNeRD 

3.5.1. Probability Image 

The resulting PI (Fig. 3.8) is an image in which every pixel value represents the 

calculated probability as defined in Eq. 3.6. 

 

Figure 3.8 – Probability Image (PI) of soybean presence for the entire Mato Grosso State, 
Brazil. Main soybean producer centres and the capital, Cuiabá, are highlighted. 
The colour indicates the calculated probability of soybean presence in 2005/2006 
given the observations made for the context variables, as expressed by Eq. 3.6. 
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The PI shows the spatial distribution of (the probability of) soybean crops throughout 

Mato Grosso territory in crop year 2005/2006. Green coloured pixels represent areas 

with higher probability of soybean presence based on observation of the context 

variables. Some of the main soybean production centres according to IBGE (2012b) are 

highlighted on the PI and allow us to verify the spatial coherence between PI and 

official soybean statistics. Previous studies that assessed soybean spatial distribution in 

Mato Grosso were also consistent with the regions of higher PI values identified here 

(ARVOR et al., 2011; RIZZI et al., 2009). 

The higher probabilities shown in Fig. 3.8 highlight traditional centres of soybean 

production in the Cerrado biome of Mato Grosso, i.e Primavera do Leste, 

Rondonópolis, Sapezal and the central region (Sorriso Southward). More recent 

soybean frontiers are in transition regions between Cerrado and the Amazon biome. In 

Sorriso municipality Northward (along the BR 163 highway) and Querência region, 

which are considered to be the newer agricultural frontiers in Mato Grosso (JEPSON, 

2009), pasturelands have been converted to soybean production in an accelerated way 

(RISSO, 2013). 

Fig. 3.9 shows, for a small subset of the study area, the set of variables within different 

conditions leading to variations in the calculated soybean presence in crop year 

2005/2006 (PI). The region labelled 1 is on a plateau and exhibits ideal conditions for 

soybean cultivation based on the designed BN model. CEI values (C and L) are high, 

predominantly in the upper discretized interval (≥ 0.26); A is high; T is flat (< 6%); W is 

≥ 2 km; and a road crosses this plateau so R is < 3 km. Since every context variable 

exhibits favourable conditions for soybean presence, the combination of these 

conditions results in high probability of soybean presence. The region labelled 2 is on 

the edge of the plateau and represents an area where soybean plantations are usually 

close to pasture lands. In this case three context variables are favourable for soybean 

presence based on the criteria discussed above (A, T and R), but CEI values (C and L) 

are unfavourable (≤ 0.20). Moreover, there are two water bodies in this region further 

reduce the probability of soybean plantations. As a result, the probability of soybean 

presence in region 2 tended to range between 25 and 50%. The region labelled 3 

corresponds to an area of Cerrado, and exhibits more or less the opposite condition to 
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that of region 1. In this case, all context variables present unfavourable conditions for 

soybean presence, leading to probability values close to zero in the PI. 

 

Figure 3.9 – Probability Image (PI) of soybean presence and six context variables (described in 
Table 3.1) zoomed in on the central part of the Sapezal municipality. The legend 
for the context variables followed the intervals stated in Table 3.2. Regions labelled 
1, 2 and 3 show respectively, ideal, intermediate and flawed conditions for soybean 
cultivation. 

Various other combinations of context variables can be found in the study area. The BN 

network is adept at dealing with such occurrences. According to KL divergence 

(KULLBACK; LEIBLER, 1951), C and L were the most important variables used to 

infer about soybean occurrence (KLC = 0.28 and KLL = 0.16). It means that, as pointed 

out by Risso et al. (2012), a proper vegetation index taken at key dates over the crop 

calendar can be used to identify specific crops such as soybean (RIZZI et al., 2006). In 

fact, due to its ability and practicability to detect soybean areas, CEI is also used to 

monitor soybean plantations in the Brazilian Amazon Biome in the context of the Soy 

Moratorium (RUDORFF et al., 2011, 2012). For the remaining context variables A, T, 

W and R, the KL divergences were 0.009, 0.002, 0.003 and 0.0001, respectively. This 

result means that soil type influenced more the calculated probability of soybean 

presence then terrain slope, water distance and especially the distance to a road. 

The relatively small influence of R on the calculated probability of soybean presence 

could be explained by the fact that soybean fields are usually very large, particularly in 

Mato Grosso. Hence, even very high transportation costs do not hinder soybean 

cultivation (GARRETT et al., 2013). Additionally, most soybean areas in Mato Grosso 
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are consolidated (i.e., traditional areas planted with soybean), especially those 

surrounding Sapezal, Sorrizo, Rondonópolis and Primavera do Leste, where 

transportation logistics have been developed to fit the available road facilities. However, 

we expect R to be more influential close to agricultural frontiers such as in the region of 

Querência (JEPSON, 2009). Indeed, the close relationship between cash crops’ 

occurrence and proximity to roads has been widely explored, often using models to 

predict future scenarios of agriculture expansion (JASINSKI et al., 2005) and 

deforestation (SOARES-FILHO et al., 2006). Although modelling such knowledge is 

possible in principle using BayNeRD, it was beyond the scope of the present study. 

The influence of T on the calculated probability of soybean presence was minimized by 

the fact that most parts (83%) of the study were relatively flat (T < 6% – Fig. 3.5). 

Nevertheless, results showed that soybean is not likely to be sown in steep areas, 

corroborating that steep areas are unsuitable for large scale mechanized agriculture 

(SEERUTTUN; CROSSLEY, 1997; SHAXSON, 1999). Historically, landholders sow 

soybean on flat areas, such as Chapada dos Parecis and those surrounding the BR-163 

highway in Mato Grosso central (e.g., Sorriso region), where the large soybean hubs are 

located (FEARNSIDE, 2002). 

In general, where only one context variable is unfavourable and/or is not strongly 

related to soybean occurrence (such as W, which presented KLW = 0.003), any decrease 

in the calculated probability of soybean presence is likely to be very small. However if 

the context variable has a strong relationship with soybean occurrence (for example C, 

which presented KLC = 0.28), any unfavourable condition of this variable is likely to 

decrease soybean probability values substantially. Additionally, the mixing within a 

pixel size of 250 x 250 m (defined as our nominal spatial resolution), especially over the 

boundaries of defined discretized intervals, could be noted in Fig. 3.9, which presented 

yellow coloured pixels surrounding green pixels in the PI. 

3.5.2. Creating thematic maps from the Probability Image 

The PI, as shown in Fig. 3.8, is the main output of BayNeRD and may be used in a 

range of different applications. For example, if one is looking for soybean areas for 

environmental supervision of soybean plantations in recent deforested areas, as defined 
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in the Soy Moratorium context in Brazil (RUDORFF et al., 2011, 2012), then areas 

where the probability of presence of soybean is high could be prioritized and the PI 

could be used to guide the logistics of field inspection by regulatory agencies (MELLO 

et al., 2010a). The PI can also be used as input for classifiers (e.g., as prior probability 

for the maximum likelihood classifier) or to mask out low probability areas before 

running a classification. 

Additionally, the PI can also be used to produce a thematic map (e.g., for acreage 

estimates) by applying a threshold probability value where all pixels with values above 

the threshold are allocated to the target thematic class (e.g., soybean). This value, herein 

called TPV, can be defined as any real value between 0 and 100%. Apart from a 

manually defined TPV, six criteria were implemented in BayNeRD to select a TPV 

according to some criterion, as defined in section “3.3.6. Selecting the Target 

Probability Value”, using reference information (e.g. reference data for testing). The 

TPV that produces the most suitable thematic map, following the chosen criterion, is 

then called the best TPV. 

The goal is to find the TPV that generates the most suitable thematic map showing two 

classes: target (soybean) and non-target (non-soybean). Several metrics are discussed in 

the literature to access map accuracy (FOODY, 2002; LIU et al., 2007). The most 

widely used one is the kappa index (COHEN, 1960; SMITS et al., 1999). However, in 

the case of binary classifications, Foody (2010) pointed out the advantages of two 

complimentary indices: sensitivity and specificity (ALTMAN; BLAND, 1994). These 

indices indicate the ability to find true positives (e.g. soybean areas which are correctly 

labelled soybean) and true negatives (e.g. non-soybean areas which are correctly 

labelled non-soybean), respectively. 

By varying the TPV from 0% to 100% different thematic maps were produced. 

Obviously, TPV = 0% produced a thematic map where all pixels within the study area 

were labelled as soybean. When all pixels were labelled soybean, all true soybean areas 

were then labelled as soybean and consequently sensitivity was equal to 100%. On the 

other hand, all true non-soybean areas were also labelled as soybean, and consequently 

specificity was 0%. With TPV increasing from 0 to 100%, sensitivity decreases while 

specificity increases. A useful graph to represent accuracy assessment in terms of these 
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two indices is known as a Receiver Operating Characteristic (ROC) curve (HANLEY; 

MCNEIL, 1982). In a ROC curve the sensitivity is plotted on the Y-axis while the X-

axis represents 1-specificity. Thus, the upper left corner represents the ideal point of 

100% sensitivity and 100% specificity. According to Zweig and Campbell (1993), the 

closer the point is to the upper left corner in a ROC curve, the higher the overall 

accuracy of the thematic map. Therefore, the used nearest 100% sensitivity and 100% 

specificity point criterion aimed at selecting the TPV that produces a thematic map 

where its corresponding point in a ROC curve is closest to the upper left corner, based 

on the reference data for testing. Fig. 3.10 shows a ROC curve produced by varying 

TPV from 0 to 100%. 

 

Figure 3.10 – Receiver Operating Characteristic (ROC) curve, depicting sensitivity and 
specificity indices associated with thematic maps generated from the 
Probability Image (PI) by varying the Target Probability Value (TPV) from 0 to 
100%. The circle points out the best TPV according to the chosen criterion. 

In the ROC curve presented in Fig. 3.10 all points plotted above the diagonal (random 

guess) represent a strong classification result (i.e. better than random) (HANLEY; 

MCNEIL, 1982). This indicates that the PI is an accurate representation of the 

phenomenon (in this case, soybean occurrence). According to the nearest 100% 
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sensitivity and 100% specificity point criterion, the best TPV should be 47%, resulting 

in a thematic map with sensitivity of 90.0% and specificity of 92.2%.Moreover, the 

overall accuracy of 91.1% and a kappa value of 0.82 corroborated the fact that this best 

TPV produced an accurate thematic map of soybean areas, based on the reference data 

for testing. Fig. 3.11 shows the accuracy indices for the PI-derived thematic maps 

generated by varying TPV from 0 to 100%. 

 

Figure 3.11 – Accuracy indices associated with thematic maps generated from the Probability 
Image (PI) by varying the Target Probability Value (TPV) from 0 to 100%. The 
vertical line identifies the best TPV, according to the chosen criterion, 
highlighting the accuracy achieved according to each index (described in the 
legend). 

A TPV can be defined to be more or less restricted in terms of associating a degree of 

belief, represented by a probability value, in which a pixel can be associated to the 

target thematic class, prioritizing either sensitivity or specificity. If the aim is that the 

total soybean area of the final thematic map closely matches the official statistics, the 

TPV can also be selected accordingly. For example, the thematic map generated with a 

TPV equal to 84% is more restrictive in terms of labelling a pixel as soybean but best 

matched the official soybean acreage for the 2005/2006 crop year in Mato Grosso. 
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Indeed this thematic map presented 6.1 Mha of soybean – only 0.8% higher than the 

official data published by IBGE (2012b). 

Similar to mapping soybean using remote sensing and environmental variables, Krug et 

al. (2013) used various environmental observations such as sea surface temperature and 

wind velocity in BNs to investigate coral bleaching along the Bahia State coast, Brazil. 

They also pointed out that BNs could be used as a prediction tool, incorporating 

evidence from a large data set of environmental observations, as we demonstrated here. 

In fact, BayNeRD could be used to infer knowledge about a variety of phenomena 

based on observations of variables that are somehow related to the phenomena. For 

example, it may be used to identify forested areas susceptible to burning based on 

observations of forcing variables such as selective logging, deforestation, rainfall, 

distance to roads and land use type of surrounding areas (ARAGÃO et al., 2008; 

SILVESTRINI et al., 2011). Detecting landslide susceptibility based on observations 

made upon variables such as slope, soil, lithological classes, terrain curvature, land 

cover and rainfall represents another possible application of BayNeRD (FELL et al., 

2008). BayNERD could also enable inference about the occurrence of certain fish 

species based on data such as sea surface temperature, chlorophyll concentration and 

sea surface winds (OLIVEIRA et al., 2010). 

3.6. Conclusion to BayNeRD 

This paper described the basis functioning and implementation of a computer aided BN 

method for raster data analysis: Bayesian Networks for Raster Data (BayNeRD). 

BayNeRD provides a new computer-aided method to characterise phenomena through 

plausible reasoning inferences based on observations of several variables. The number 

of variables is not limited and the sole conditions are an accurate match of raster cells 

and the availability of a suitable reference data set. 

The case study of mapping soybean areas in Mato Grosso State, Brazil, showed 

BayNeRD’s capability to model environmental phenomena. Based on observations 

made upon Crop Enhanced Index (CEI) values for the current and last crop years, soil 

type, terrain slope and distance to the nearest road and water body, the resulting 
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Probability Image (PI) from BayNeRD presented a spatial distribution of soybean areas 

consistent with expert knowledge and official statistical data. Starting from the PI, a 

thematic map could be produced depicting the spatial distribution of soybean and non-

soybean areas with overall accuracy greater than 91%. 

Advantages of BayNeRD include that it incorporates expert’s knowledge into the 

process; it models the (in)dependence relationships among several observed variables; it 

outputs variable importance information, through the Kullback-Leibler divergence; it 

can accommodate different forms of data (numerical and categorical); it can handle 

incomplete data; it allows computation of probability functions from the data; and it is a 

user-friendly implementation in a free software ready to handle raster data sets. 

The BayNeRD algorithm has been implemented in R software and can be found on 

internet. 
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4 Final remarks 

This thesis presented two methods, which represent an advance to the development and 

implementation of methods for remotely sensed data analysis focused on cropland 

mapping applications. These methods were described in full and tested using case 

studies of sugarcane harvest and soybean mapping. 

Chapter 2 presented the Spectral-Temporal Analysis by Response Surface (STARS) 

method in full and showed how STARS may be efficiently used to monitor sugarcane 

harvest in Brazil. We tested two different response surface models [i.e., Polynomial 

Trend Surface (PTS) and Collocation Surface (CS)] and two types of coefficients (i.e., 

orthonormal and regular) for the description of a multitemporal-multispectral Landsat 

dataset of 11 images (six spectral bands). With an overall accuracy of 99%, STARS 

performed well when used as input features in classifications aiming to map sugarcane 

fields harvested with or without straw burning, and sugarcane fields not harvested by 

the end of the crop harvest season. Although tested as input for classifiers, STARS is a 

robust method for modelling spectral-temporal changes of agricultural targets on Earth’s 

surface. It reduces noise and dimensionality (e.g., PTS model) and may deal with 

images acquired at irregular time intervals, by different sensors with multispectral 

bands. Additionally, STARS can be used in a range of applications. 

Complimentary to the thesis objective, chapter 3 described the Bayesian Network for 

Raster Data (BayNeRD), which allows the modelling of complex phenomena 

integrating variables into a model to make inferences using plausible reasoning from 

observations. This chapter briefly introduced Bayesian Networks (BN) theory and 

described how it was used to develop BayNeRD. The case study of soybean mapping in 

Mato Grosso State was used to test and evaluate BayNeRD. We integrated two years of 

remotely sensed (represented by a crop index named Crop Enhancement Index – CEI) 

and ancillary (i.e., topography, soil, roads and water bodies) data into a BN model 

which encoded the dependence relationship among these variables and between each 

one of them with soybean occurrence in Mato Grosso. The Probability Image (PI) that 

resulted from BayNeRD showed strong adherence to the official agricultural statistics 

from IBGE. Moreover, the thematic map generated from PI presented more than 91% of 

overall accuracy. Although ancillary data proved to increase accuracy of classifications, 
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we found that remotely sensed data had the strongest influence, as evidenced by the 

calculated probability of soybean presence. This result demonstrated the potential of 

remote sensing as a source of data for agricultural monitoring. BayNeRD allowed the 

expert to model the soybean occurrence phenomenon, outputted variables’ importance 

information, and handled incomplete and different sort of data. Indeed, BayNeRD 

showed potential for use in several applications such as for the Soy Moratorium context. 

The two methods developed and tested confirm our hypothesis that remotely sensed 

(and ancillary) data analysis can be automated through computer aided methods to 

model a range of cropland phenomena for agriculture applications, maintaining 

consistency and accuracy. Both methods were entirely implemented in R software. 
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