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ABSTRACT: Several studies have been devoted to dynamic and statistical downscaling for 

both climate variability and climate change. This paper introduces an application of temporal 

neural networks for downscaling global climate model output and autocorrelation functions. 

This method is proposed for downscaling daily precipitation time series for a region in the 

Amazon Basin. The downscaling models were developed and validated using IPCC AR4 model 

output and observed daily precipitation. In this paper five AOGCMs for the twentieth century 

(20C3M) (1970-1999) and three SRES scenarios (A2, A1B, and B1) were used. The 

performance in downscaling of the temporal neural network was compared to that of an 

autocorrelation statistical downscaling model with emphasis on its ability to reproduce the 

observed climate variability and tendency for the period 1970-1999. The model test results 

indicate that the neural network model significantly outperforms the statistical models for the 

downscaling of daily precipitation variability.  

 
1. INTRODUCTION 

Numerical models (general circulation models, or GCMs) representing physical processes in the 

atmosphere, ocean, cryosphere and land surface, are the most advanced numerical tools currently 

available for weather and climate forecasts, and for simulating the response of the global climate system 

to increasing greenhouse gas concentrations.  A complete review of GCMs used in climate 

variability and change can be found in Meehl et al. (2007). 

GCM simulations of local climate at individual grid points are often poor, especially in areas 

near mountains or coastlines. The notion that the increase of anthropogenic greenhouse gases 

will lead to significant global climate change over the next century is the accepted consensus of 

the scientific community. Human activities have been pointed out to have a significant 

contribution to the observed warming in the last 50 years, and in the projections of climate until 

the end of the Century XXI (Meehl et al. 2007). Human-related activities, as compared to 

natural climate variability (Zhang et al. 2007) are pointed out as the main cause of the observed 

warming in the 20
th
 century, and the projected warming possible in the 21st century.  In this 

context, an assessment of possible future changes of precipitation and temperature over the 

continents is highly relevant, considering the possible impacts of those changes and the issues of 

vulnerability that lead to consideration of adaptation measures. 

For applications to impact studies, such as hydrological impacts of climate change, impact 

models are usually required to simulate sub-grid scale phenomenon and therefore require input 

data (such as precipitation and temperature) on a similar sub-grid scale. The methods used to 

convert GCM outputs into regional high-resolution meteorological fields required for reliable 

hydrological modeling are usually referred to as “downscaling” techniques (e.g. Hewitson and 

Crane, 1992). In recent years, a number of papers within the climatological community have 

adopted artificial neural networks as a tool for downscaling, principally in spatial resolution, 

from the large-scale atmospheric circulation to local or regional climate variables (Cavazos, 

1999). 
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There are various downscaling techniques available to convert GCM outputs into daily 

meteorological variables appropriate for studies of hydrological impact and climate change 

variability (e.g. Dibike and Coulibaly, 2006). Widmann et al., (2003) developed a method to 

downscale precipitation, referred to as “local rescaling”.  

There are several different methods that can be used to derive the relationship between local and 

large-scale climates. There is statistical downscaling used for spatial downscaling; but mostly 

multiple linear regression, principle component analysis, and artificial neural networks are used.  

However, the procedure selected mainly depends on the objective of the study and its 

applications (Solman and Nuñez, 1999). Dynamical downscaling generates regional-scale 

information by developing and using regional climate models (RCMs) with the coarse GCM 

data used as boundary conditions. The RCMs represent an effective method of adding fine-scale 

detail to simulated patterns of climate variability and change, as they resolve better the local 

land-surface properties such as orography, coasts and vegetation and the internal regional 

climate variability through their better resolution of atmospheric dynamics and processes 

(Giorgi et al., 2004; Marengo et. al., 2009b).   

Artificial Neural Networks (ANNs) denote a set of connectionist models inspired by the 

behavior of the human brain. In particular, the Multilayer Perceptron (MLP) is the most popular 

ANN architecture, where neurons are grouped in layers and only forward connections exist. 

This provides a powerful base learner, with advantages such as nonlinear mapping and noise 

tolerance, increasingly used in the Data Mining (DM) and Machine Learning (ML) fields due to 

its good behavior in terms of predictive knowledge (e.g. Rumelhart et al., 1995). The simplest 

form of ANN (e.g. Multilayer Perceptron) is reported to give results similar to those from 

multiple regression downscaling methods.  

The objective of this study is to identify temporal empirical functions, using artificial neural 

networks (ANNs) and autocorrelation functions (ACs) that can capture the complex relationship 

between selected large-scale predictors and locally-observed meteorological variables for a 

given temporal scale (predictands). 

The ANN method uses feed-forward which has temporal processing capability without resorting 

to complex and costly training methods. The emphasis of the feed-forward method is to evaluate 

and compare the optimal method with the most commonly used regression-based downscaling 

method and some of the IPCC AR4 models to which the downscaling technique is applied. The 

AOGCMs used in this paper derive from the IPCC project (CGCM3; CSIRO-MK3.5; 

ECHAM5-MPI; GFDL-CM2.1; and MIROC3.2-MEDRES) simulation for the twentieth century 

(present day – 20C3M) and SRES scenarios (A2, B1 and A1B). All five models represent the 

state-of-the-art AOGCMs (e.g. Boulanger et al., 2006, 2007). 

 

2. DATASETS AND PREDICTOR CHOICE 
3.1 Observed and model datasets. 

a. The data used in these studies were from rain gauges located within the Brazilian Amazon 

Basin (Figure 1), which are part of the Brazilian national hydrometeorological network. They 

were provided by the National Water and Electric Energy Agency of Brazil (ANEEL), whose 

sources include the ANEEL network. Precipitation (P) is computed from rainfall observations in 

the Amazon Basin and is derived for the entire basin, using the records of 33 rainfall stations. 

 

b. The AOGCM outputs are interpolated over the 2.5° x 2.5° grid defined for the observation. 

The period used for present conditions (20C3M run scenario) is 1970-1999, and the future is 

2070-2099 as derived from five IPCC AR4 models. The five models (Table 1) represent state-

of-the-art AOGCMs. In this paper we use the 20C3M run and SRES scenarios for futures A2, 

B1, and A1B, described in Nakienovic et al (2000). It is important to note, however, that the 

20C3M simulation is intended to represent the same historical total-forcing scenarios, including 

both natural variability and the effect of human emissions on climate (e.g.  Marengo et al., 

2009b). 
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Figure 1 – Study area, with stations used. 

Acronym Model Resolutions Source 

CGCM3 cccma_cgcm3_1_t63 T63L31 
Canadian Centre for Climate 

Modeling and Analysis 

CSIRO csiro_mk3_0 T63L18 

Australian Commonwealth 

Scientific Industrial and 

Research Organization 

ECHAM mpi_echam5 T42L19 
Max-Planck-Institut für 

Meteorologie 

GFDL2.1 gfdl_cm2_1 M45L24 
Geophysical Fluid Dynamics 

Laboratory 

MIROC-m miroc3_2_medres T42L20 

Centre for Climate System 

Research, University of 

Tokyo; National Institute 

for Environmental Studies; 

Frontier Research Centre for 

Global Change 

Table 1 - climate models with daily data for precipitation available from PCMDI. Column 1 is the 

acronym used in the text. Column 2 is the name of the model used in the PCMDI archive, columns 3 

model resolution, and column 4 is the source of the model. 

 
 

3. DOWNSCALING  
3.1 Validation Results 

The ANN were developed using various hidden nodes and layers. The final error after a given 

number of training cycles was observed. The number of intermediate nodes varied from three to 

eight and the number of iterations varied from 500 to 1 for converging to a desired mean square 

error and cross-evaluation on the validation set (Figure 2).  

The synthesis of precipitation was carried out using statistical procedures for the purpose of 

comparison to the ANN results. The autocorrelation function for precipitation for the Amazon 

Basin is shown in Figure 4.  

The time series plots in Figure 3 shows observed precipitation by day of season (JFM, JJA) and 

results of simulations using ANN from the AOGCMs. The use of ANN compared with 

autocorrelation results in a satisfactory performance, principally in daily variation (Figure 4).  

The autocorrelation and partial autocorrelation analysis suggest the modeling of precipitation 

using multivariate autoregressive model (AR). An AR model was applied to generate the series 

and an inverse path of model fitting used to obtain the original variables. The residual series 

were tested for independence and normality. The test for normality indicated that the residual 

series followed a normal distribution.  

Comparison of results obtained using the ANN compared with those obtained using an 

alternative statistical model indicates that the network is a potential competitive alternative tool 

for the analysis of multivariate time series. 

Table 2 show the comparison of monthly means and standard deviation of the series generated 

using both the ANN and statistical model from the Amazon Basin. Table 3 gives the 
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comparison of the monthly skewness of the generated series using the ANN and AR for the 

Amazon Basin.  

 

Figure 2 – The absolute error as a function of the number of iterations for various numbers of 

intermediate nodes. 

The ANN preserved the mean skewness (skewness is a measure of the asymmetry of the 

probability distribution of a real-valued random variable) of the generated series about as well 

as the statistical models did. Table 3 gives the comparison of the monthly values of skewness of 

the series generated by the use of the ANN and AR for the Amazon Basin. To conclude, each of 

these measures of performance in the Amazon Basin showed the overall high skill of the models 

(Section 3) in representing precipitation patterns and variability. 
 

 

 

 

Figure 3 - Observed historical precipitation (black) by day of season (JFM, JJA), and results of 

simulations (line and open cicle) using Artificial Neural Network from AOGCMs, for Amazon Basin. 

 

5.2 Downscaling scenarios 

These data cover one period (2070-2099) and three scenarios (A2, A1B, B1). The ANN 

downscaling results in Figure 4 indicate a decrease of one-third both in the mean daily 

precipitation, with low difference between scenarios, principally between May and September 

and an increase between January and March (Figure 4; table 4).   

Table 4a summarizes the downscaling results by presenting the simulated increase or decrease 

in monthly values of the difference 1970-1999 (present from 20C3M and observation data) and 

the future 2070-2099 from the 5 models, in mm day
-1

 and percentage (%), for each of the 

downscaling methods.  

In the A2 scenario, ANN and autocorrelation method results predicted a small increase (+1,60 

and 2,90 %, for ANN and AC, respectively). In the A1B scenario, ANN showed no 

increase/decrease, and AC gave a decrease of -2.50 %. For the B1 scenario, ANN gave a 

decrease (-0.90 %) and AC an increase (+0.68 %). 
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Figure 4 – Autocorrelation of historic precipitation in the Amazon Basin from observed data and ANN 

downscaling for the 1970-1999. 

 

In summary, the result suggests a slight increase in the mean annual precipitation values in the 

study area about 1.78 % for the future years. Generally, there is good regional agreement 

between the signs of the precipitation changes in the AOGCM and the downscaled result in 

seasons (Table 4). The downscaling results from climate change scenarios (A2, A1B, and B1) 
presenting the increase or decrease in seasonal values of precipitation between the current 

(1970-1999) and (2070-2099) time period for each of the downscaling methods are as follows: 

a) JFM (January-February-March) increase; 

b) JJA (June-July-August) decrease. 
 

 Mean Standard Deviation 

 Observed ANN AR Observed ANN AR 

January 6,13 6,00 6,25 0,85 0,93 0,94 

February 6,40 6,55 6,49 0,93 0,94 0,95 

March 6,15 6,29 6,35 1,25 1,05 1,15 

April 5,65 5,60 5,90 1,30 1,25 1,23 

May 4,21 4,25 4,20 0,98 0,96 0,93 

June 2,99 3,05 2,99 0,85 0,71 0,99 

July 2,22 2,55 2,51 0,83 0,93 0,93 

August 2,16 2,19 2,25 0,93 0,83 0,95 

September 2,90 3,00 2,95 0,90 0,99 1,01 

October 3,86 3,99 4,00 0,99 1,03 0,93 

November 4,78 5,05 5,31 1,05 1,02 1,03 

December 5,44 5,30 5,25 1,03 1,00 1,05 

Table 2 – Comparison of mean and standard deviation of observed and generated precipitation series for 

Amazon Basin for1970-1999 (present conditions). 

 

MEAN 

 Observed ANN AR 

January 0,05 0,03 0,03 

February 0,01 0,01 0,02 

March 0,03 0,05 0,06 

April 0,01 0,04 0,03 

May 0,05 0,09 0,05 

June 0,06 0,03 0,04 

July 0,03 0,05 0,03 

August 0,01 0,03 0,07 

September 0,02 0,02 0,08 

October 0,04 0,09 0,05 

November 0,01 0,04 0,03 

December 0,04 0,03 0,04 

Table 3 – Comparison of skewness of observed and generated precipitation series for Amazon Basin from 

1970-1999 (Present day). 

 

 



 6 

 

Increase/decrease 

 A2 A1B B1 
 ANN 

*/+ 

AR 

*/+ 

ANN 

*/+ 

AR 

*/+ 

ANN 

*/+ 

AR 

*/+ 

JAN 0,86 / 14,0 0,76 / 12,40 0,68 / 11,1 0,87 / 9,4 0,26 / 4,2 -0,03 / -0,5 

FEB 1,69 / 26,4 1,72 / 26,90 0,99 / 15,5 0,72 / 11,3 1,21 / 18,9 1,12 / 17,5 

MAR 2,46 / 40,0 2,40 / 39,00 2,30 / 37,4 2,18 / 35,4 2,0 / 32,5 2,4 / 39,0 

APR 0,78 / 13,8 1,24 / 21,90 0,64 / 11,3 0,91 / 16,1 0,55 / 9,7 0,60 / 10,6 

MAY -1,31 / -31,1 -1,36 / -32,3 -1,19 / -28,3 -1,09 / -25,9 -1,01 / -24,0 -0,65 / -15,4 

JUN -1,70 / -56,9 -1,43 / -47,8 -1,70 / -56,9 -1,44 / -48,2 -1,76 / -58,9 -1,78 / -59,5 

JUL -1,22 / -55,0 -1,20 / -54,1 -1,23 / -55,4 -0,97 / -43,7 -1,37 / -61,7 -1,22 / -55,0 

AUG -1,13 / -52,3 -1,17 / -54,2 -1,21 / -56,0 -1,05 / -48,6 -1,26 / -58,3 -1,17 / -54,2 

SEP -1,15 / -39,7 -1,11 / -38,3 -1,07 / -36,9 -1,15 / -39,7 -0,9 / -31,0 -1,01 / -34,8 

OCT -0,07 / -1,80 0,03 / 0,80 -0,04 / -1,0 -0,04 / -1,0 0,09 / 2,3 0,13 / 3,4 

NOV 0,52 / 10,9 0,67 / 14,0 0,81 / 16,9 -1,06 / -22,2 0,77 / 16,1 1,22 / 25,5 

DEC 1,09 / 20,0 1,0 / 18,40 1,05 / 19,3 0,88 / 16,2 0,95 / 17,5 0,81 / 14,9 

Table 4 – Changes of monthly precipitation for the Amazon Basin interms of increase or decrease (mm 

day
-1 

) in comparison to the period 2070-2099 for different scenarios. Difference between 2070-2099 and 

1971-1999 indicated by * and percentage difference (increase or decrease) indicated by  
+ .

 

 

4. CONCLUSIONS 
This paper investigates the applicability of a temporal neural network as a downscaling method using an 

artificial neural network and an autocorrelation model for the generation of daily precipitation over the 

Amazon Basin (for the current years – 20C3M, and future scenarios). The ANN as well as the 

autocorrelation model both provided a very good fit to the data. This indicates that an ANN offers a 

viable alternative for multivariate modeling of precipitation time series.  

The results obtained using the ANN model compared with those obtained using an alternative statistical 

model indicate that the network is a potentially competitive alternative tool for the analyses of 

multivariate time series. Comparison of the monthly values of skewness generated by the use of ANN 

with those generated by autocorrelation showed little difference between the two methods. 

In relation to the three scenarios (A2, A1B, and B1), the ANN indicates a decrease by about a third both 

in the mean daily precipitation and very low difference between scenarios (May to September) and an 

increase between January and April (Figure 5). Performance of the ANN, principally for present-day 

conditions (1970-1999) for most seasons was better than that of the autocorrelation method. 

However, one should also remember that all the downscaling in this study uses outputs from only one of 

various general circulation models. Previous studies showed that data taken from different GCMs could 

produce significantly different downscaling outputs.  

In considering the method and results, it is important to note that our method is actually based on a 

hypothesis. The hypothesis is that the weight given to each of the various models when computing their 

differing estimates of twenty-first century climate conditions should depend on the skill of each in 

representing present climate conditions.  

A major difficulty in using ANN for climate change lies in determining the network’s capability to 

extrapolate. A comparison between ANN and a linear projection based on statistical downscaling allowed 

us to determine that the ANN penalizes climate change projections. The ratio between ANN and 

autocorrelation is sensitive to two factors: the bias and the divergence criteria. They represent respectively 

the error between the linear combination and present-day climate conditions and the variance between the 

models. 

In conclusion, when applied to precipitation, the ANN approach makes it possible to compute the optimal 

set of weights for autocorrelation of the models (used in this paper), and a penalty function or probability 

that such a change occurred, based on the present-climate model biases and their projected dispersion.  

The main advantages of this downscaling method (ANN) are its temporal processing 

ability and its ability to incorporate not only the concurrent, but also several preceding 

predictor values as input without any additional effort. 
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