XXX CBRAVIC - Hotel Leão da Montanha, Campos do Jordão, SP, 13 a 16 de setembro de 2009

CRESCIMENTO DE DIAMANTE CVD CO-DOPADO COM NITROGÊNIO E ENXOFRE

W. L. A. Corrêa¹*, M. Ueda², J. T. Matsushima², C. R. B. Miranda², M. R. Baldan², N. G. Ferreira²

¹Universidade São Francisco, Itatiba/SP-Brasil ²Instituto Nacional de Pesquisas Espaciais, São José dos Campos, Brasil

1. Introdução

Filmes de diamante CVD dopados com boro, apresentando propriedades de um semicondutor tipo p, já foram desenvolvidos para detectores de radiação ultravioleta (UV) [1] e como eletrodos para aplicações na eletroquímica [2]. O nitrogênio tem sido também muito pesquisado como um dopante tipo n, no entanto age como doador de nível muito profundo (1,7 eV) [3]. Recentemente começaram a aparecer trabalhos mostrando que a inserção de átomos de enxofre na rede cristalina do diamante era possível e que o mesmo apresentava propriedades semicondutoras do tipo n [4]. Apesar de que o enxofre provavelmente se encontre duplamente ionizado no diamante, pequenas frações de enxofre poderiam encontrar-se no estado S⁺, dessa forma doando um elétron para a banda de condução em temperatura ambiente [5]. A proposta de estudo aqui é a co-dopagem de enxofre e nitrogênio no diamante cvd e posterior verificação da possível criação de estados distribuídos próximos ao fundo da banda de condução como de um típico semicondutor tipo n.

2. Experimento

A introdução da substância dopante C_3H_7NS , foi realizada por arrasto de H_2 nos fluxos 10, 15 e 20 ml/min a qual foi mantida a uma temperatura de 41°C para manter a mesma pressão de vapor. A relação CH_4/H_2 foi de 0,99%. A morfologia superficial das amostras foi analisada através de microscopia eletrônica de varredura (MEV). A qualidade do diamante foi obtida pelo registro da espectroscopia Raman por um RMS2000 (Renishaw Microscope System).

3. Resultados

A morfologia das amostras foi pouco alterada como podemos observar na Fig.1, para as variações de fluxo de H_2 + vapor de C_3H_7NS , no entanto os espectros Raman na Fig.2 mostram a formação de diamante (pico em 1332 cm⁻¹), de carbono não-diamante (banda centrada em 1550 cm⁻¹) e uma possível incorporação de N e S (banda centrada em 623 cm⁻¹) a serem estudados conforme é alterada a concentração de dopante.

Fig. 1. Imagens de MEV para fluxos de $H_2+C_3H_7N$; (a) 10ml/min, (b) 15ml/min e (c) 20ml/min, respectivamente.

Fig. 2. Espectroscopia Raman para os fluxos de $H_2+C_3H_7NS$ de 10ml/min, 15ml/min e 20ml/min.

4. Referências

[1] V. I. Polyakov, A. I. Rukovishnikov, N. M. Rossukanyi, A. I. Krikunov, V. G. Ralchenko, A. A. Smolin, V. I. Konov, V. P. Varnin, and I. G. Teremetskaya, Diamond Relat. Mater. 7, 821, (1998).

[2] N. Vinocur, B. Miller, Y. Avyigal, and R. Kalish, J. Electrochem. Soc. 143, L238, (1996).

[3] A. Wotherspoon, J. W. Steeds, B. Catmull, J. Butler, Diamond Relat. Mater. 12, 652, (2003).

[4] I. Sakaguchi, M. N.-Gamo, Y. Kikuchi, E. Yasu, H. Haneda, T. Suzuki and T. Ando, Physical Review B. 60, 2139, (1999).

[5] T. Nishimatsu, H. Katayma-Yoshida, N. Orita, Physica B 302-303, 149, (2001).

Agradecimentos

Especial agradecimento a Maria Lúcia B. de Mattos (LAS/INPE) pelas imagens MEV e a José Antônio F. Baptista (USF) pelo suporte técnico.

*Autor Correspondente: wlac@uol.com.br