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The structure of stationary adiabatic premixed flames within porous inert media
under intense interphase heat transfer is investigated using the asymptotic expansion
method. For the pore sizes of interest for combustion in porous inert media, this
condition is reached for extremely lean mixtures where lower flame velocities are
found. The flame structure is analysed in three distinct regions. In the outer region
(the solid-phase diffusion length scale), both phases are in local thermal equilibrium
and the problem formulation is reduced to the one-equation model for the energy
conservation. In the first inner region (the gas-phase diffusion length scale), there
is local thermal non-equilibrium and two equations for the energy conservation
are required. In this region, the gas-phase temperature at the flame is limited by
the interphase heat transfer. In the second inner region (the reaction length scale), the
chemical reaction occurs in a very thin zone where the highest gas-phase temperature is
found. The results showed that superadiabatic effects are reduced for leaner mixtures,
smaller pore sizes and smaller fuel Lewis numbers. The results also show that there
is a minimum superadiabatic temperature for the flame propagation to be possible,
which corresponds to the lean flammability limit for the premixed combustion in
porous inert media. A parameter that universalizes the leading-order flame properties
is identified and discussed.
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1. Introduction
Lean premixed combustion in porous inert media has received much attention

in the last few decades as a way of extending flame stability, burning low-heat-
content fuels and providing radiant heating (Howell, Hall & Ellzey 1996; Oliveira &
Kaviany 2001). The heat recirculation induced by the porous media adds to the energy
released by combustion resulting in local temperatures in excess of the adiabatic flame
temperature for the gas phase, a phenomenon that has been called superadiabatic
combustion (Echigo 1991). This high temperature in the reaction region increases
the reaction rate and allows for combustion of low-heat-content gas mixtures whose
stoichiometric ratio lies outside the flammability limits for unstretched laminar free
flames.

† Email address for correspondence: fernando@labcet.ufsc.br
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In this work, ultra-lean premixed flames within infinite adiabatic porous inert media
are studied analytically. This condition is characterized by low flame velocities that
result in intense interphase heat transfer, which in turn leads to thermal equilibrium
between the gas and solid phases in a wide region around the flame. The analysis
shows that this intense interphase heat transfer limits the superadiabatic effect and
reveals thermal aspects of the lean flammability limit for the flame propagation in
porous inert media.

There is a lack of studies concerning the steady-state ultra-lean operation of
porous burners (Wood & Harris 2008). In an experimental and numerical study of
radiant porous burners performance, Hsu, Evans & Howell (1993) obtained stable
methane–air flames at equivalence ratios as low as 0.41, which is smaller than the
lean flammability limit for free flames, φ = 0.5 (Law 2006). The results showed that
there was a decreasing flow rate range where stable flames could be sustained as the
mixture was made leaner. Below a certain value of the equivalence ratio (φ � 0.55)
the burner heat loss was the dominating factor in determining the minimum flow
rate for stable flames. In these cases, the flame did not present flashback: instead, it
just extinguished when the flow rate was decreased. Although the experiments could
not reach the flammability limit, the authors hypothesized that, at this limit, there is
only one flow rate that leads to a stable flame. For this flow rate, the energy released
by the combustion process is just large enough to yield the temperature required
to maintain the chemical reaction. This means that, for the ultra-lean operation of
radiant burners, the lean flammability limit is determined by a balance between heat
losses and heat recirculation. Experimental and numerical studies have reported stable
flames below the unstretched laminar free-flame lean flammability limit (Min & Shin
1991; Hackert, Ellzey & Ezekoye 1999; Liu & Hsieh 2004). It is expected that, for
perfectly adiabatic burners, the lean limit for the flame propagation will be found
for much lower equivalence ratios than in radiant burners. Other experimental works
report stable ultra-lean combustion in porous inert media (Hardesty & Weinberg
1974; Kotani & Takeno 1982; Kotani, Behbahani & Takeno 1984), but some kind of
external heat recirculation is used.

Ultra-lean combustion is also achieved in low-velocity forward filtration combustion
in porous inert media (Zhdanok, Kennedy & Koester 1995; Henneke & Ellzey 1999;
Shi et al. 2008). In this case, the reaction front propagates at low velocities (less
than 1mm s−1) and the flame can be sustained for equivalence ratios as low as 0.15.
The interaction of the combustion wave with the thermal wave can lead the flame
to reach temperatures as high as 2.8 times the corresponding adiabatic flame limit
(Zhdanok et al. 1995). For the case of reciprocal flow filtration combustion reactors,
lean flammability limits are found for equivalence ratios as low as 0.026 (Hoffmann
et al. 1997) due to the intense heat recuperation induced by this system. Dobrego et al.
(2008) present a numerical study of the influence of several parameters on the lean
flammability limit for methane–air mixtures in reciprocating combustion. This is not
the case for stationary flames. As it will be shown below, the non-dimensional flame
temperature based on the adiabatic flame temperature decreases as the flammability
limit is approached.

Asymptotic analyses have been proposed for the solution of the stationary premixed
gas flames within porous inert media for semi-infinite and finite length burners
(Deshaies & Joulin 1980; Buckmaster & Takeno 1981; McIntosh 1988; Golombok
et al. 1991; McIntosh & Prothero 1991; Boshoff-Mostert & Viljoen 1996; Schoegl &
Ellzey 2007). All these models divide the flame in a preheating region, a thin
combustion region and a post-combustion region. Expressions for the gas- and
solid-phase temperatures and flame position are obtained as a function of an imposed
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flame velocity. Analytical solutions for the problem of filtration combustion in porous
inert media (Zhdanok et al. 1995; Bubnovich, Zhdanok & Dobrego 2006) and in
porous reactive media (Schultz et al. 1996; Wahle & Matkowsky 2001) are also
proposed in the literature.

In a previous work (Pereira, Oliveira & Fachini 2009), an asymptotic solution
was proposed for stationary adiabatic premixed flames in porous inert media taking
advantage of the large difference between the thermal conductivity of the solid and
gas phases. In that analysis, a two-equation model for the energy conservation is
used with effective properties and a diffusion approximation for the intramedium
radiation. The flame structure is characterized by three characteristic length scales.
The two innermost length scales are the same scales defined in the classical premixed
flame structure analysis. The outermost length scale is related to the heat conduction
in the porous matrix. The results of the model show that the influence of the porous
medium on the flame is to increase its temperature and velocity and that this influence
is more pronounced for leaner mixtures, higher solid-phase thermal conductivities,
lower porosities and lower fuel Lewis numbers. It is also shown that the reaction
region is shorter in flames within porous media since higher flame temperatures are
found.

The previous work is valid for equivalence ratios ranging approximately from 0.60
to 0.80. The upper bound is the result of the simplifications involved in the one-step
kinetic mechanism used. The lower bound is related to an interphase heat transfer
parameter defined as N ≡ λshv/(ρn sF cp)2, where λs is the solid-phase effective thermal
conductivity, hv is the volumetric surface convection coefficient, ρn is the unburnt gas-
phase density, sF is the flame velocity measured in the unburned stream and cp is the
gas-phase heat capacity at constant pressure. In that analysis the condition N � Γ

is satisfied, where Γ is the thermal conductivities ratio (Γ = λs/λg , where λg is the
gas-phase effective thermal conductivity). Typical values of Γ range from 10 to 300
depending on the matrix conductivity and structure. Then, with N ∼ O(1), the specific
condition analysed in the previous work, the interphase heat transfer at the gas phase
and at the reaction length scales is negligible. Then, the flame structure at the inner
scales is similar to that of a free flame. This will not hold for extremely lean mixtures
where lower flame velocities are found.

The present study aims to extend the previous work to lower equivalence
ratios where the condition N ∼ O(Γ ) prevails. Higher values of N result in local
thermal equilibrium between the phases in a wide region around the flame. This
intense interphase heat transfer limits the superadiabatic effect, showing that the
superadiabatic flame temperature should have a maximum at the lean side of the
equivalence ratio range. The model also provides a first approximation for the lean
flammability limit for the flame propagation in adiabatic porous inert media based on
thermal considerations. In this case, since there is no influence of heat losses, the lean
flammability limit is determined only by the heat recirculation that is a function of
the solid- and gas-phase properties. To the authors’ knowledge, an analysis of these
limits has not been reported before.

2. Length scales and thermal non-equilibrium
Figure 1 shows a schematic representation of the problem under consideration.

Since we are dealing with extremely lean mixtures with very low flame velocities, the
gas and solid phases have enough contact time to reach thermal equilibrium in a
wide region around the flame. This region corresponds to a characteristic solid-phase
diffusion length scale defined as lS ≡ (1 − ε)λs/(ερnsF cp), where ε is the volumetric
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Figure 1. Schematic representation of the temperatures and fuel mass fraction distributions
and the different characteristic length scales of the problem.

porosity. In a thin region around the flame there is still considerable thermal non-
equilibrium between the phases. This region corresponds to a characteristic gas-phase
diffusion length scale defined as lG ≡ ελg/(ερnsF cp). The ratio between these two
scales is lG/ lS ∼ ε/Γ (1 − ε). As in the previous work, the present model is restricted
to ε/(1 − ε) ∼ O(1), ensuring the scales separation (lG/ lS ∼ 1/Γ ).

As the equivalence ratio decreases, the larger contact time between the phases
causes an intense heat transfer from the gas phase to the solid phase at the length
scale lG. Then, contrary to the previous model, the non-dimensional flame temperature
decreases as the mixture is made leaner. Since the flame velocity is proportional to
the Lewis number, the same results are found when the Lewis number is decreased.
These behaviours are particular to ultra-lean premixed combustion in porous inert
media and are due to a change in the direction of the interphase heat transfer. For
higher flame velocities, the interphase heat transfer is important only at the solid-
phase diffusion length scale lS where, upstream from the flame, the solid phase loses
heat to the gas phase. For lower flame velocities, both phases are in local thermal
equilibrium at the length scale lS and the interphase heat transfer is intense at the
gas-phase diffusion length scale lG. Now, upstream from the flame, it is the gas phase
that loses heat to the solid phase.

The description of the reaction region is identical to the previous work since the
interphase heat transfer in this region is still negligible. Here a characteristic reaction
length scale is defined as lR/ lG ≡ δ. The parameter δ is the inverse of a modified
Zel’dovich number defined as 1/δ = (Ea(Tr − Tn))/(RuT

2
sup), where Ru is the universal

gas constant, Ea is the activation energy, according to the Arrhenius reaction rate
model, Tsup is the superadiabatic flame temperature (maximum temperature at the
reaction region) and Tn is the initial temperature.

The heat transfer parameter N ≡ λshv/(ρn sF cp)2 controls the degree of non-
equilibrium between the phases in each one of the characteristic length scales defined
above. As N → ∞, the solid and gas phases tend to thermal equilibrium in all length
scales and a single temperature could be used to model the problem. As N → 0, the
interphase heat transfer becomes negligible everywhere and the problem reduces to a
free-flame structure for the gas phase that is totally decoupled from the solid-phase
temperature.

The order of magnitude of the parameter N is determined by N ∼ τS/τh, where
τS = lS/sF is the characteristic residence time at the solid-phase diffusion length scale
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and τh = ρncp/hv is the characteristic time for heat transfer. Characteristic time scales
can be similarly defined for the inner scales as τG = lG/sF and τR = lR/sF . Then,
for N ∼ O(1), the case analysed in the previous work, we have τS ∼ τh, τG ∼ τh/Γ

and τR ∼ τhδ/Γ , which means that the residence times at the inner scales are very
small compared to the heat transfer time. As a result, the interphase heat transfer is
important at the outermost length scale lS only. In the present work, since N ∼ O(Γ ),
we now have τS ∼ τhΓ , τG ∼ τh and τR ∼ τhδ. Then, the interphase heat transfer is still
negligible at the innermost length scale lR , whereas it is important at the intermediate
length scale lG. At the outermost length scale lS , however, the residence time is much
larger than the time for heat transfer, so thermal equilibrium between the phases is
reached. For the case N ∼ O(Γ/δ), to be discussed in a future work, the interphase
heat transfer is important at lR only, and thermal equilibrium is reached at the outer
scales.

For a given value of Γ and fluid properties, the characteristic residence time is
basically determined by the flame velocity sF , whereas the time for heat transfer is
basically determined by the volumetric heat transfer coefficient hv . Then, higher values
of N may be reached by decreasing the equivalence ratio, resulting in lower flame
velocities, or, for a fixed porosity, decreasing the pore size of the solid matrix, resulting
in higher values of hv . Note, however, that sF and hv are not independent parameters
and N is subjected to many cross-influences. In the present model, we choose to
work with pore sizes of the order of 1 mm, which are typical of porous burners
with submerged flames, so the condition N ∼ O(Γ ) may be reached by decreasing
the equivalence ratio. Discussions about the conditions that lead to thermal non-
equilibrium in combustion of porous reactive media and of porous solid propellants
are found in Wahle, Matkowsky & Aldushin (2003) and Telengator, Williams &
Margolis (2006), respectively.

From the asymptotic point of view, the flame structure analysis follows the
hypothesis that lS � lG � lR . Moreover, from the point of view of the use of a
continuous treatment for the porous medium (Kaviany 1995), it is assumed that
lS � lrev � ld , where lrev is the characteristic length of the representative elementary
volume over which the volume-averaging is done and ld is the characteristic length
of the pores. Contrary to the previous model, in the present analysis the gas-phase
diffusion length scale is larger than the pore size while the reaction length scale is still
confined to a single pore, lG > ld > lR . Then, the innermost length scale lR behaves as
a subgrid model with negligible interphase heat transfer.

In the following, the equations for the model are written and solved using the
asymptotic expansion method. The solution for the innermost scale follows the large
activation energy asymptotic method (Liñán 1974; Fachini 1996; Fachini, Liñán &
Williams 1999; Fachini 2005). Finally, typical results are presented and discussed in
view of the model.

3. Mathematical formulation
A one-dimensional two-medium model for the conservation of mass, mass of

chemical species, gas-phase energy and solid-phase energy is constructed, following
Pereira et al. (2009). The mass conservation implies that ρnun is constant for the
one-dimensional flow with un being the gas velocity far upstream from the flame. For
stationary flames, the laminar flame speed sF is equal to un. The gas-phase specific
heat capacity cp , the effective thermal conductivities (ελg for the gas and (1 − ε)λs

for the solid) and the product ρεDi (gas-phase density times effective mass diffusivity
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of species i) are assumed uniform along the flame. The effective thermal conductivity
of the solid phase includes the pore tortuosity and the intraphase radiation through
a radiant conductivity (Rosseland approximation). The effective thermal conductivity
and mass diffusivity of the gas phase include the pore tortuosity and the hydrodynamic
dispersion effects. The gas-phase radiation and flame stretch effects are neglected. The
pressure drop across the porous medium is assumed negligible when compared to the
total pressure and the momentum equation becomes trivial.

The fuel combustion is assumed to occur following a global one-step mechanism,
represented in mass variables as

F + νO2 → (1 + ν)P,

where ν is the mass of oxygen per mass of fuel ratio (stoichiometric).
The steady-state volume-averaged mass, energy and species conservation equations

(omitting for simplicity the volume-averaging notation) then become

ερu = ερnsF , (3.1)

ερnsF

dYF

dx
= ερDF

d2YF

dx2
− εAρ2YOYF T a

g e−Ea/RuTg , (3.2)

ερnsF

dYO

dx
= ερDO

d2YO

dx2
− ενAρ2YOYF T a

g e−Ea/RuTg , (3.3)

ερnsF cp

dTg

dx
= ελg

d2Tg

dx2
+ εQAρ2YOYF T a

g e−Ea/RuTg + hv(Ts − Tg), (3.4)

0 = (1 − ε)λs

d2Ts

dx2
− hv(Ts − Tg), (3.5)

where YF and YO are the gas-phase volume-averaged fuel and oxidant mass fractions,
εDF and εDO are the fuel and oxidant total effective mass diffusivities, Tg and Ts are
the gas-phase and solid-phase phasic volume-averaged temperatures, Q is the fuel,
mass, based heat of reaction, A is the pre-exponential factor of the Arrhenius reaction
rate and a is the temperature exponent of the reaction rate expression.

3.1. Non-dimensionalization

Defining the non-dimensional variables (Williams 1985)

yF ≡ YF

YFn

, yO ≡ YO

YOn

, θ ≡ cp(T − Tn)

YFn Q
=

T − Tn

Tr − Tn

and ζ ≡
∫ x

0

ρnsF

λs/cp

dx,

equations (3.2)–(3.5) become

ε
dyF

dζ
=

ε

LeF Γ

d2yF

dζ 2
− εΓ Da yOyF exp

[
− β(1 − θg)

1 − α(1 − θg)

]
, (3.6)

ε
dyO

dζ
=

ε

LeO Γ

d2yO

dζ 2
− εφΓ Da yOyF exp

[
− β(1 − θg)

1 − α(1 − θg)

]
, (3.7)

ε
dθg

dζ
=

ε

Γ

d2θg

dζ 2
+ εΓ Da yOyF exp

[
− β(1 − θg)

1 − α(1 − θg)

]
+ N(θs − θg), (3.8)

0 = (1 − ε)
d2θs

dζ 2
− N(θs − θg), (3.9)
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where

Γ ≡ λs

λg

, φ ≡ YFnν

YOn

, α ≡ (Tr − Tn)

Tr

, β ≡ Ea(Tr − Tn)

RuT 2
r

,

Lei ≡ λg

ρn cp Di

, Da ≡
A ρ2 λg YOn T a

g exp(−β/α)

(ρ2
n s2

F cp)
,

and N ≡ λshv

(ρn sF cp)2
.

The parameter φ is the equivalence ratio, α is the dimensionless heat release, β is
the Zel’dovich number, Lei is the species i effective Lewis number that accounts for
the thermal and species hydrodynamic dispersions (i stands for fuel F and oxidant
O), Da is the Damköhler number and N is the interphase heat transfer parameter.

To achieve ultra-lean premixed flames, the burning conditions are such that the
value of the interphase heat transfer parameter N becomes very large, N � 1.
In the present work, the condition N ∼ O(Γ ) is chosen in order to observe the
response of the flame properties to the thermal non-equilibrium between the phases
in the gas-phase diffusion length scale lG.

In the following, the problem of the order of unity, corresponding to the solid-
phase diffusion length scale lS , is solved. Then, the problem of the order of Γ −1,
corresponding to the gas-phase diffusion length scale lG, is solved. Finally, the problem
of the order of δΓ −1, corresponding to the reaction length scale lR , is solved.

3.2. Outer zone: problem of the order of unity

In the characteristic length scale ζ − ζf ∼ O(1), the diffusive terms in the gas phase
are of the order of Γ −1 and the reaction is exponentially small. Thus, equations
(3.6)–(3.9) take the form

ε
dyF

dζ
=

ε

LeF Γ

d2yF

dζ 2
, (3.10)

ε
dyO

dζ
=

ε

LeO Γ

d2yO

dζ 2
, (3.11)

ε
dθg

dζ
=

ε

Γ

d2θg

dζ 2
+ N(θs − θg), (3.12)

0 = (1 − ε)
d2θs

dζ 2
− N(θs − θg). (3.13)

The solution of (3.10)–(3.13) can be written as

yF = y
(0)
F + Γ −1y

(1)
F + o(Γ −1),

yO = y
(0)
O + Γ −1y

(1)
O + o(Γ −1),

θs = θ (0)
s + Γ −1θ (1)

s + o(Γ −1),

θg = θ (0)
g + Γ −1θ (1)

g + o(Γ −1).

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(3.14)

Substituting (3.14) into (3.10)–(3.13) and applying the limit Γ → ∞ ( N → ∞), the
first approximation for the set of equations of the order of unity is

dy
(0)
F

dζ
= 0, (3.15)
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dy
(0)
O

dζ
= 0, (3.16)

θ (0)
s = θ (0)

g = θ (0). (3.17)

The boundary conditions for ζ → −∞ are θ (0) = 0 and y
(0)
F = y

(0)
O = 1 and for ζ → +∞

are θ (0) = 1 and y
(0)
F = y

(0)
O − (1 − φ) = 0. The solutions for (3.15) and (3.16) are

y
(0)
F = y

(0)
O = 1 for ζ < ζf and y

(0)
F =0 and y

(0)
O = 1 − φ for ζ > ζf .

Summing up (3.12) and (3.13), imposing the thermal equilibrium condition (3.17)
and neglecting the term of the order of 1/Γ , one finds

dθ (0)

dζ
=

(
1 − ε

ε

)
d2θ (0)

dζ 2
. (3.18)

Equation (3.18) is equivalent to the one-equation model for the energy conservation
with effective properties (Sahraoui & Kaviany 1994; Bubnovich et al. 2006).
Integrating (3.18) and applying the proper boundary conditions, one finds the
first approximation for the temperature profile in the region of thermal equilibrium
between the two phases,

θ (0) =

{
exp{(ζ − ζf )[ε/(1 − ε)]} for ζ � ζf ,

1 for ζ � ζf .
(3.19)

Note that, since local thermal equilibrium is assumed in this scale, superadiabatic
flame temperatures are not possible. This solution is similar to a free-flame solution
with the mean properties of an homogeneous medium composed by the gas and the
solid phases.

Now, collecting the terms of the order of Γ −1, one finds the equation for the first
correction for the temperature as(

1 − ε

ε

)
d2θ (1)

dζ 2
− dθ (1)

dζ
= −d2θ (0)

dζ 2
, (3.20)

where the condition θ (1)
g = θ (1)

s = θ (1) is still valid.

The boundary conditions for the first correction are θ (1) → 0 at ζ → ±∞ and ζ → ζf .
Integrating (3.20) with (3.19), the solution for the first correction gives

θ (1) =

{
− [ε/(1 − ε)]2 (ζ − ζf ) exp{[ε/(1 − ε)] (ζ − ζf )} for ζ � ζf ,

0 for ζ � ζf .
(3.21)

Equations (3.14), (3.17), (3.19) and (3.21) form the type of solution obtained when
the one-equation model for the energy conservation is employed to solve the problem
of combustion within porous inert media.

3.3. Inner zone: problem of the order of Γ −1

In this thin region, gas and solid phases do not have enough contact time to reach
thermal equilibrium. Superadiabatic temperatures are expected to arise, but are limited
by the intense interphase heat transfer.

The variation of the non-dimensional variables is of the order of unity along a
characteristic length of the order of Γ −1 around the flame, except for the solid-phase
temperature that presents just a small variation of the order of Γ −1. The variables in
this region are denoted by y

(∗)
F , y

(∗)
O , θ (∗)

s and θ (∗)
g .
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The expansion for the variables can be written as

y
(∗)
F = y

(∗)(0)
F + Γ −1y

(∗)(1)
F + o(Γ −1),

y
(∗)
O = y

(∗)(0)
O + Γ −1y

(∗)(1)
O + o(Γ −1),

θ (∗)
s = 1 − Γ −1θ (∗)(1)

s + o(Γ −1),

θ (∗)
g = θ (∗)(0)

g + Γ −1θ (∗)(1)
g + o(Γ −1).

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(3.22)

Note that the solid-phase temperature has been approximated by unity to leading
order. The analysis that justifies θ (∗)(0)

s ∼ 1 is presented in Pereira et al. (2009). In
that work it is shown that as N → ∞ the solid-phase temperature at the flame θsf

tends to unity, and that θsf is bounded by 1/2 < θsf < 1. Since lG represents a thin
region around the flame, the solid-phase temperature is assumed equal to unity in the
problem to O(Γ −1). This means that the present model is valid for flames in which
the solid-phase temperature at the flame presents a small deviation from the adiabatic
limit. With this assumption, the two phases are decoupled at the leading order for
this length scale, as will be seen next.

By rescaling the spatial coordinate as Γ (ζ − ζf ) = ξ , defining N ≡ N0Γ , with N0

being a parameter of the order of unity, substituting the asymptotic expansions (3.22)
into the conservation equations (3.6)–(3.9) and collecting the higher-order terms, the
governing equations become

ε
dy

(∗)(0)
F

dξ
=

ε

LeF

d2y
(∗)(0)
F

dξ 2
, (3.23)

ε
dy

(∗)(0)
O

dξ
=

ε

LeO

d2y
(∗)(0)
O

dξ 2
, (3.24)

ε
dθ (∗)(0)

g

dξ
= ε

d2θ (∗)(0)
g

dξ 2
+ N0

(
1 − θ (∗)(0)

g

)
, (3.25)

0 = (1 − ε)
d2θ (∗)(1)

s

dξ 2
− N0

(
1 − θ (∗)(0)

g

)
. (3.26)

The boundary conditions are determined when the solution corresponding to the
problem of the order of unity is matched with the problem of the order of Γ −1.
Thus, in the unburned region, i.e. upstream from the flame, for ξ → −∞, dθ (∗)

g /dξ

and dθ (∗)
s /dξ are equal to Γ −1dθ (0)/dζ evaluated at ζf . Then, in first approximation,

dθ (∗)(0)
g /dξ ∼ Γ −1ε/(1 − ε) ∼ 0 and dθ (∗)(1)

s /dξ ∼ −ε/(1 − ε). Analogously, y
(∗)
F = y

(∗)
O → 1

as ξ → −∞. In the burned region, i.e. downstream from the flame, for ξ → ∞,
θ (∗)
g = θ (∗)

s → 1 and y
(∗)
F = y

(∗)
O − (1 − φ) = 0. At the flame, the gas- and solid-phase

temperatures, θ
(∗)
gf and θ

(∗)
sf , are unknowns to be determined.

The solutions of (3.23) and (3.24) are

y
(∗)(0)
F =

{
1 − eLeF (ξ−ξf ) for ξ � ξf ,

0 for ξ � ξf ,
(3.27)

y
(∗)(0)
O =

{
1 − φeLeO (ξ−ξf ) for ξ � ξf ,

1 − φ for ξ � ξf .
(3.28)
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Equation (3.25) can be written as

d2θ

dξ 2
− dθ

dξ
− N0

ε
θ = 0, (3.29)

where θ ≡ (θ (∗)(0)
g − 1). Since θ (∗)

s = 1 in a first approximation, (3.29) is independent
of the solid-phase temperature and can be integrated. The solution of (3.29) is
θ = C1e

r1ξ + C2e
−r2ξ . Applying the proper boundary conditions, one finds

θ (∗)(0)
g =

{
1 +

(
θ

(∗)(0)
gf − 1

)
er1(ξ−ξf ) for ξ � ξf ,

1 +
(
θ

(∗)(0)
gf − 1

)
e−r2(ξ−ξf ) for ξ � ξf ,

(3.30)

in which θ
(∗)(0)
gf is the gas-phase temperature at the flame, yet to be determined, and

r1 =
1

2

[(
1 + 4

N0

ε

)1/2

+ 1

]

and

r2 =
1

2

[(
1 + 4

N0

ε

)1/2

− 1

]
.

With knowledge of the leading-order term of the gas solution, θ (∗)(0)
g , (3.26) can be

integrated, giving

θ (∗)(1)
s =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

[(
N0

(
θ

(∗)(0)
gf − 1

))/(
r2
1 (1 − ε)

)]
(er1(ξ−ξf ) − 1)

− (ε/(1 − ε))(ξ − ξf ) + θ
(∗)(1)
sf for ξ � ξf ,[(

N0

(
θ

(∗)(0)
gf − 1

))/(
r2
2 (1 − ε)

)]
(e−r2(ξ−ξf ) − 1)

+ θ
(∗)(1)
sf for ξ � ξf .

(3.31)

Now, applying the continuity of the heat flux in the solid phase at the flame, one
finds

θ
(∗)(0)
gf = 1 + θsup, (3.32)

θsup = (1 + Nε)
−1/2, (3.33)

Nε = 4N0/ε. (3.34)

Equation (3.32) is the first approximation for the gas-phase temperature at the
flame, where θsup (defined in (3.33)) is the excess temperature at the flame, i.e. the
temperature above the adiabatic limit. It is possible to see that θsup depends only on

the parameter Nε . Then, since θ
(∗)(0)
sf = 1 as a first approximation, the parameter Nε ,

called the porous media flame number, is the parameter that defines universally the
leading-order problem at the flame. This result has also been obtained in Pereira et al.
(2009).

As a way of interpreting the parameter Nε , an analogy to heat exchange can be
made. By using the N0 and lG definitions, Nε can be written as

Nε = 4

(
hvlG

ερnsF cp

)
. (3.35)
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Now, applying the definition of the number of transfer units (NTU) for the heat
transfer in a porous medium, we have

NTU =

(
h

ρucp

)
Ags

Au

=

(
h

ρucp

)
SgsV

εAT

=
hvL

ερucp

, (3.36)

where h is the surface convection heat transfer coefficient, Ags is the interphase surface
area, Au is the transversal area of the fluid phase, Sgs is the interphase surface area
density (m2/m3) and V , AT and L are, respectively, the total volume, total transversal
area and total length of the porous medium. Then, the parameter Nε is a particular
case of the number of transfer units based on the length scale lG and on the flame
velocity sF ,

Nε = 4 NTUG and NTUG =
hvlG

ερnsF cp

. (3.37)

As in heat transfer theory, the number of transfer units denotes the ratio of the
axial heat transfer resistance (1/ρucpAu) and the surface heat transfer resistance
(1/hAgs) (Kaviany 2001). Therefore, a large value of Nε denotes a small interphase
heat transfer resistance when compared to the axial heat transfer resistance at the lG
scale.

Returning to (3.32), it is possible to verify that the superadiabatic effect is more
pronounced for lower values of Nε , i.e. less heat transfer between the phases, and
higher values of ε. Equations (3.32)–(3.34) show that, in a first approximation,
the flame temperature does not depend on the solid conductivity. This happens
because the solid-phase temperature is unity in a first approximation. Therefore,
under the conditions considered in this analysis (N ∼ Γ � 1), the interphase heat
transfer is the limiting process that defines the flame properties.

Applying the remaining boundary condition, one finds

θ
(∗)(1)
sf =

N0

(
θ

(∗)(0)
gf − 1

)
r2
2 (1 − ε)

=
( ε

1 − ε

) θsup(1 + θsup)

(1 − θsup)
, (3.38)

which is the first correction for the solid-phase temperature at the flame.
Now, collecting the terms of the order of Γ −1 for the gas phase, one finds

ε
dθ (∗)(1)

g

dξ
= ε

d2θ (∗)(1)
g

dξ 2
− N0

(
θ (∗)(1)
s + θ (∗)(1)

g

)
, (3.39)

where the boundary conditions are dθ (∗)(1)
g /dξ = ε/(1 − ε) for ξ → −∞ and θ (∗)(1)

g =0
for ξ → ξf . Then, the first correction of gas-phase temperature, for ξ � ξf , can be
determined as (see Appendix A)

θ (∗)(1)
g =

ε

1 − ε

[
−15(θ2

sup − 1/5)(θ2
sup + 1/3)

4θ2
sup(1 − θ2

sup)
(1 − er1(ξ−ξf )) + (ξ − ξf )

]
. (3.40)

Although the present model does not describe either the limit Nε → 0 or the limit
Nε → ∞, the analysis of these limits is able to reveal qualitatively the results from
Pereira et al. (2009) and information of the flame extinction, respectively. For the
conditions such that θsup → 1 (Nε → 0) according to (3.33), the term multiplying the
exponential term in (3.40) goes to minus infinity, showing that the flame temperature
θ

(∗)
gf satisfies (2 − θ

(∗)
gf ) � Γ −1, as pointed out by (3.22), (3.32) and (3.40). However, for

the conditions such that θsup → 0 (Nε → ∞), according to (3.33), the term multiplying

the exponential term in (3.40) goes to infinity, showing that the flame temperature θ
(∗)
gf
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satisfies (θ (∗)
gf − 1) � Γ −1. This result shows that superadiabatic flame temperatures

are observed even for large values of Nε , agreeing with the necessary conditions for
the flame propagation that will be found in the next section.

3.4. Inner zone: reaction region O(δΓ −1)

In a region of the order of δΓ −1 around the flame, the variables present a variation
of the order of δ. The solution follows the same steps already discussed in Pereira
et al. (2009) for higher equivalence ratios.

The expression relating the flame velocity with the problem parameters is

s2
F =

2Aρ2
f λgYOnT

a
gf exp(−β/α)

(ρ2
n cp)

[δ2LeF (1 − φ)] exp

{
−β

(
1 − θ

(∗)
gf

)
1 − α

(
1 − θ

(∗)
gf

) + m n

}
, (3.41)

in which

δ =
[
1 + α

(
θ

(∗)
gf − 1

)]2
/β.

In (3.41) the parameter n is a displacement in the coordinate axis in order to match
the solution in the reaction length scale lR with the solution in the gas-phase diffusion
length scale lG. The parameter m represents the ratio of the thermal flux downstream
from the flame to the total heat release. Liñán (1974) proposed an approximate
expression for a curve fit of the numerical solution of the problem in the reaction
region, relating these two parameters by

m n = 1.344m − 4m2(1 − m)/(1 − 2m) + 3m3 − ln(1 − 4m2) for 0 < m < 0.5.

(3.42)

The value of m can be determined from the gas temperature profile (3.30), resulting
in

m = r2/(r1 + r2) = (1 − θsup)/2. (3.43)

As already discussed in the previous work, for combustion within porous media
the value of m is bounded by 0 � m � 1/2. The limit m =0 corresponds to a freely
propagating flame with no heat loss downstream from the flame, while the excess of
enthalpy requires m > 0. The limit m → 1/2 corresponds to a situation in which the
heat loss downstream from the flame is equal to the heat loss upstream from the
flame, and under this condition the flame is not stable, i.e. there is extinction. Then,
the flame temperature needs to be above the adiabatic free-flame temperature for the
flame propagation to be possible, i.e. θsup > 0.

3.5. Model summary

A closed-form approximated solution for the structure and propagation velocity of
ultra-lean adiabatic stationary premixed flames in porous inert media is obtained.
The temperature profile of both phases for the region of thermal equilibrium is given
by (3.14), (3.17), (3.19) and (3.21). In the region of thermal non-equilibrium, the
temperature profile of the gas phase is described by (3.22), (3.30), (3.32) and (3.40)
and the temperature profile of the solid phase is described by (3.22), (3.31), (3.32) and
(3.38). The fuel and oxidant mass fraction profiles are given by (3.27) and (3.28). The
flame velocity is evaluated by (3.41), in which (3.42) and (3.43) are used.

This set of equations is able to qualitatively predict, under the limitations imposed
by the simplifying assumptions, the main characteristics of flames in porous media for
heat transfer parameters N of the order of Γ . A condition imposed in this solution
is ε/(1 − ε) ∼ O(1), which ensures the separation of the length scales of the problem.
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Properties and parameters Results

Ru 8.314 J (mol K)−1 λs 4.041 W (m K)−1

Ea 1.2 × 105 J mol−1 hv 1.476 × 104 W (m3 K)−1

A 1.0 × 1010 m3 (kg s)−1 Tr 838 K
a 0 Tgf 1052.1 K
Q 4.759 × 107 J kg−1 Tsf 805.0 K
cp 1141 J (kgK)−1 sF 2.252 cm s−1

λg 0.0673 W (m K)−1 N0 1.072
ρn 1.185 kgm−3 lpha 0.64
Tn 298 K β 11.1
C ′ 0.146 Daf 42.74
m′ 0.83 Daf 0.37
ε 0.8 m 0.3017
φ 0.225 n 0.9926
ϕ 50 p.p.i. δ 0.142
Γ 60 N 64.31
LeF 1 θgf 1.397

Table 1. Properties and parameters used in the calculations and results for φ = 0.225, Γ = 60,
ε = 0.8, ϕ = 50 p.p.i. and LeF = 1.

The model is also restricted to the conditions where the solid-phase temperature at
the flame presents small deviations from the adiabatic limit. In the next section the
model will be explored to evaluate the influence of the problem parameters on such
flames.

4. Discussion
For the results that follow, the reaction rate parameters were adjusted to agree

with measured laminar methane–air flame speeds for free flames with equivalence
ratios ranging from 0.5 to 0.6 (Zhu, Egolfopoulos & Law 1989). The heat of reaction
was adjusted to reproduce the adiabatic flame temperature for φ = 0.5. The gas-
phase properties were approximated by the air properties evaluated at 1000 K. The
volumetric heat transfer coefficient hv is modelled following Fu, Viskanta & Gore
(1998), which uses a volumetric Nusselt number, Nuv =C ′Rem′

, where Nuv = hvl
2
d/λg

and Re is the Reynolds number, Re = ρnunld/µn, where µn is the gas-phase viscosity.
The parameters C ′ and m′ are curve-fitting constants. The mean pore diameter is
modelled as ld = (

√
4ε/π)/(39.37ϕ), which is a uniform pore distribution model, where

ϕ is the linear pore density given in pores per inch (p.p.i.). Note that the variations of
hv are expressive for extremely lean mixtures and the present analysis must take this
variation into account. The used transport and geometric properties of the solid phase
are typical of porous burners (Mößbauer et al. 1999; Catapan, Pereira & Oliveira
2005). Table 1 shows the parameters and properties used in the calculations and some
of the results obtained.

4.1. Influence of the equivalence ratio

Figure 2 shows the flame velocity sF as a function of equivalence ratio φ. The
upper branch of the curve corresponds to a physical solution while the lower branch
corresponds to a non-physical solution (N � Γ ). Below φ = 0.217, the parameter
m approaches the limiting value 0.5 and the steady-state flame propagation is not
possible. Then, the present model predicts a flammability limit for the premixed
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Figure 2. The flame velocity sF as a function of the equivalence ratio φ. The upper branch
corresponds to the physical solution.
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Figure 3. The parameter N0 as a function of φ.

methane–air combustion within porous inert media. For the porous medium under
analysis, this limit is found around φ = 0.217, while for free methane–air flames, this
limit is found around φ = 0.5. All the subsequent analysis will be restricted to the
physical branch of the solution.

Figure 3 shows the parameter N0 = N/Γ as a function of the equivalence ratio φ.
The model is constructed for N0 ∼ O(1), so we see that the solution is valid for a
small range of equivalence ratios around φ =0.225. Since N0 is proportional to 1/s2

F ,
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Figure 4. Gas- and solid-phase temperatures at the flame as a function of φ.

for leaner mixtures the corresponding lower flame velocities result in higher values
of N0.

Figure 4 shows the gas- and solid-phase temperatures at the flame as a function of
the equivalence ratio φ. Contrary to the previous model, where the condition N ∼ O(1)
was considered, for the condition N ∼ O(Γ ), the non-dimensional flame temperature,
θ

(∗)
gf , increases as φ is increased. This is a consequence of (3.32)–(3.34), in which θ

(∗)(0)
gf

varies with N
−1/2
0 . Physically, the reason for this behaviour is the intense heat transfer

from the gas phase to the solid phase that occurs at the gas-phase diffusion length
scale for leaner mixtures. Lower values of φ result in lower flame velocities; thus
there is more time for the interphase heat transfer and the gas-phase temperature is
limited by the intense heat loss to the solid matrix. As φ is further decreased, there
is a point at which the temperatures at the flame are not high enough to sustain
the flame and a flammability limit is found. As the superadiabatic flame temperature
decreases, i.e. as θsup decreases, the heat flux to the downstream side of the flame
becomes more important and the parameter m tends to the limiting value of 1/2,
according to (3.43). Then, one can conclude that, to sustain flames at φ smaller than
the free-flame flammability limit, it is necessary to reach a minimum superadiabatic
flame temperature, i.e. θsup > 0, as discussed in relation to (3.43). For the conditions
considered in figure 4, the temperature at the flame must be at least 20 % above the
adiabatic free-flame temperature.

It is interesting to note that for moderately lean mixtures the non-dimensional
superadiabatic flame temperature increases when φ is decreased (Pereira et al. 2009),
whereas for the ultra-lean mixtures the opposite is observed. Then, we expect to find
a point of maximum non-dimensional superadiabatic flame temperature in the lean
side of the equivalence ratio range. This can be understood by considering the two
limiting cases presented in § 2. For N → 0 the two equations for the conservation of
energy are decoupled and the flame structure has the same structure of a free flame.
The solid phase plays no role in the solution and superadiabatic flame temperatures
are not possible. For N → ∞ the two phases are in local thermal equilibrium and
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the problem reduces to a one-equation model, i.e. a free-flame-like structure for
an homogeneous medium with effective properties, and again superadiabatic flame
temperatures are not possible. For intermediate values of N thermal non-equilibrium
between the phases and superadiabatic flame temperatures are found and a point of
maximum non-dimensional superadiabatic flame temperature must exist.

An interesting characteristic of the model is that (3.32) and (3.38) do not depend
on Γ , i.e. in a first approximation the solid thermal conductivity λs does not influence
the gas- and solid-phase temperature at the flame. This happens because, with the
approximation θ (∗)(0)

s =1, the heat conduction in the solid phase is not the limiting
process for the gas-phase preheating. Instead, the interphase heat transfer and the
convective–diffusive balance in the gas phase are the controlling processes that define
the properties at the flame. Nevertheless, the solid-phase conductivity impacts the
extension of the flame thickness lS . For ultra-lean mixtures, the solid-phase diffusion
length scale is very large. For example, the flame thickness reaches 20 cm for φ =0.225,
Γ =60, ε = 0.8 and ϕ =50 p.p.i. This occurs because the low flame velocities of these
extremely lean mixtures allow a wide thermal penetration.

According to (3.22), the solid-phase temperature at the flame is found by θ
(∗)
sf = 1 −

Γ −1θ
(∗)(1)
sf . According to (3.38), θ

(∗)(1)
sf varies with N

−1/2
0 , and since N0 increases as φ

decreases, the solid-phase temperature at the flame θ
(∗)
sf is expected to increase for

lower values of φ. This is a consequence of the intense interphase heat transfer found
in extremely lean mixtures. As N0 increases, the solid- and gas-phase temperatures at
the flame becomes closer, approaching the adiabatic limit, i.e. θ

(∗)
gf → 1 and θ

(∗)
sf → 1.

4.2. Influence of the matrix properties

Figure 5 shows the dependence of the interphase heat transfer parameter N0, the
flame temperature θ

(∗)
gf , the solid-phase temperature at the flame θ

(∗)
sf and the flame

velocity sF on the porosity ε. The effect of decreasing ε, for a constant ϕ, is to decrease
the mean pore diameter ld , thus resulting in a large heat transfer coefficient hv and,
consequently, in a large value of N0. Again, the effect of increasing N0 is to decrease
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the superadiabatic effect. According to (3.32)–(3.34), the gas-phase temperature at the
flame varies as ε1/2. The flame velocity follows the gas-phase temperature at the flame
and increases with increasing values of ε. As N0 increases the solid-phase temperature
at the flame approaches the limiting value of unity.

When the linear density of pores ϕ is increased while maintaining a constant
porosity ε, the mean pore diameter decreases. This leads to a solid matrix with a
large specific superficial area (m2/m3), thus increasing the interphase heat transfer
coefficient hv and the parameter N0. The behaviour of the flame variables when
increasing ϕ is shown in figure 6 and is similar to that of decreasing the porosity, i.e.
for higher values of N0 the superadiabatic effect decreases.

It is interesting to note that, decreasing ϕ, the condition N0 ∼ O(1) is obtained
for decreasing values of φ, i.e. the decrease in hv caused by the larger pores has
to be balanced by the lower flame velocities obtained for leaner mixtures. This, in
turn, leads to decreasing values for the lean flammability limit, as shown in figure 7.
This result shows that, for premixed combustion within porous inert media, the lean
flammability limit is no longer a property of the reactants mixtures only, but it also
depends on the solid matrix properties. Additionally, at the lean flammability limit,
the reaction length scale lR is of the order of the pore diameter ld , showing that, in
this limit, the interphase heat transfer tends to be important even at the innermost
length scale.

It is important to recall that, although the present model is based on the one-
step reaction mechanism, this approximation is adequate for this first theoretical
approach since it permits the adjustment of a few chemical parameters to agree
with experiments. Despite this and other simplifying assumptions, the results reveal
the strong dependence of the flammability limit for premixed flames in porous
inert media on the matrix properties. To improve this prediction, more complex
mechanisms should be considered and experiments should be carried out to correctly
determine the volumetric interphase heat transfer coefficient hv at the flow rates and
temperatures of interest. Additionally, since the value of N0 is much higher than one
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in the flammability limit, the precise determination of this limit requires a model
considering the condition N � Γ .

4.3. Influence of the Lewis number

Figure 8 shows the effect of fuel Lewis number LeF on the flame variables. Since,
according to (3.41), lower flame velocities sF are found for lower values of LeF , the
interphase heat transfer is intensified when LeF is decreased due to the longer contact
time between the phases and, consequently, the superadiabatic effect is also decreased.
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This behaviour is contrary to that found for higher equivalent ration, as shown in a
previous work (Pereira et al. 2009).

4.4. Flame structure

Figure 9 shows the flame structure for φ =0.225, Γ = 60, ε = 0.8, ϕ =50 p.p.i. and
LeF =1. The gas- and solid-phase temperatures obtained for the problems of O(1) and
O(Γ −1) are presented. A composite solution would be necessary to obtain uniformly
valid expressions for the temperature profiles. Nevertheless, as shown in Appendix B,
this would require the solution of additional terms for the asymptotic expansions that
do not bring new information to the problem.

The present solution shows that, even though we are dealing with a problem that
presents local thermal equilibrium in a wide region around the flame, the choice
to model the problem with the one-equation model for the conservation of energy
would neglect the existence of superadiabatic flame temperatures in a thin region
around the flame. These superadiabatic flame temperatures decrease as the interphase
heat transfer is increased; however, there should exist a small region of thermal
non-equilibrium around the flame where superadiabatic flame temperatures will be
found, in order for the flame to be sustained. This result cannot be obtained with
the models that assume local thermal equilibrium between the phases over the entire
domain of solution.

5. Conclusions
An analysis of adiabatic stationary planar premixed flames within inert porous

media is proposed for the conditions of N ∼ O(Γ ) and ε/(1−ε) ∼ O(1). The condition
N ∼ O(Γ ) is characterized by an intense interphase heat transfer that can be found
for extremely lean mixtures or for solid matrices with very small pore sizes. These
flames present a wide region of local thermal equilibrium between the phases and the
superadiabatic effect is limited by the intense interphase heat transfer at the gas-phase
diffusion length scale lG.
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The superadiabatic effect is less pronounced for lower values of ε and higher
values of ϕ. This behaviour is related to the increase in the interphase heat transfer
coefficient hv . The superadiabatic effect is also less pronounced for lower values
of LeF , a behaviour which is connected to the lower flame velocities observed for
decreasing values of LeF .

The analysis shows that the superadiabatic flame temperature decreases as φ

is decreased, i.e. as the interphase heat transfer becomes more intense. Since,
in a previous model, valid for higher equivalence ratios, the superadiabatic
flame temperature increases when φ is decreased, a maximum non-dimensional
superadiabatic flame temperature in the lean side of the equivalence ratio range
is expected to exist.

For extremely lean mixtures, the gas-phase temperature at the flame must reach a
minimum superadiabatic flame temperature for the flame propagation to be possible.
Thus, the model shows the existence of a flammability limit for ultra-lean mixtures. For
methane–air flames, considering LeF = 1, and with Γ = 60, ε = 0.8 and ϕ = 50 p.p.i.,
the present analysis predicts the lean flammability limit to ‘occur’ around φ = 0.217
with a gas-phase temperature at the flame 20 % above the adiabatic limit. A better
determination of this limit would require the use of more complex kinetic mechanisms
and the solution of the problem of N0 � 1. These results cannot be obtained with
the models that assume local thermal equilibrium between the phases over the
entire domain of solution because these models do not allow superadiabatic flame
temperatures to arise.
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Appendix A. First correction for the gas-phase temperature for the problem of
the order of Γ −1

The first correction for the gas-phase temperature for the problem of the order of
Γ −1 is important for ξ � ξf , since the boundary condition at ξ → −∞ was not used in
the leading-order solution. Then, combining (3.39) with (3.31) for ξ � ξf one arrives
at the following heterogeneous second-order differential equation:

d2θ (∗)(1)
g

dξ 2
−

dθ (∗)(1)
g

dξ
− N0

ε
θ (∗)(1)
g =

N0

ε

{
θ

(∗)(1)
sf

[
1 +

(
r2

r1

)2(
er1(ξ−ξf ) − 1

)]

− ε

1 − ε
(ξ − ξf )

}
. (A 1)

The solution of (A 1) is the sum of the solution of the respective homogeneous
equation with the solution of the particular case. The homogeneous equation has a
solution of the form

θ
(∗)(1)
g,h = C1e

r1ξ − C2e
r2ξ , (A 2)

where C1 and C2 are constants to be determined by applying the boundary conditions.
The particular solution is

θ (∗)(1)
g,p = C3e

r1ξ + C4ξ + C5, (A 3)
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where the constants are

C3 =
θ

(∗)(1)
sf (r2/r1)

2 N0/ε

r2
1 − r1 − N0/ε

, C4 =
ε

1 − ε
, C5 = θ

(∗)(1)
sf

[(
r2

r1

)2

− 1

]
+

N0

1 − ε
.

Then, the solution of (A 1) is

θ (∗)(1)
g = (C1 + C3) er1ξ − C2e

r2ξ + C4ξ + C5, (A 4)

with the boundary conditions dθ (∗)(1)
g /dξ = ε/(1 − ε) for ξ → −∞ and θ (∗)(1)

g = 0 for
ξ = ξf . Then, the constants C1 and C2 can be determined from (A 4) and one arrives
at

θ (∗)(1)
g =

{
θ

(∗)(1)
sf

[(
r2

r1

)2

− 1

]
+

N0

1 − ε

}(
1 − er1(ξ−ξf )

)
+

( ε

1 − ε

)
(ξ − ξf ). (A 5)

Now, substituting the expressions for θ
(∗)(1)
sf , r1 and r2 into (A 5), (3.40) is recovered.

Appendix B. Composite solutions
Uniformly valid solutions for the gas- and solid-phase temperatures, without gaps

or spurious corners, can be obtained by constructing a composite solution. This is
done by summing the respective inner, O(Γ −1), and outer, O(1), solutions and then
subtracting the terms common to both solutions.

For the solid phase, for example, to find the common terms, the outer solution,
given by (3.14), is rewritten in terms of the inner variable ξ , and the limit Γ → ∞
is taken, i.e. the inner limit of the outer solution is found. To order Γ −1, the terms
common to both solutions are found to be 1 + Γ −1[ε/(1 − ε)]ξ . Then, a composite
solution can be written as

θs,c =

⎧⎪⎪⎨
⎪⎪⎩

exp
[
Γ −1 (ε/(1 − ε)) ξ

]
−Γ −1θ

(∗)(1)
sf

[
1 + (r1/r2)

2 (er1ξ − 1)
]

for ξ � ξf ,

1 − Γ −1θ
(∗)(1)
sf e−r2ξ , for ξ � ξf .

(B 1)

The problem with (B 1) is that it does not recover the boundary condition at
ξ → −∞. In the present problem, the correct limits as ξ → −∞ for the composite
solutions of the solid- and gas-phase temperatures are asymptotically reached as
additional terms are included in the respective inner and outer solutions. However,
since these additional terms are not relevant to the conclusions of the present work,
they will not be solved.
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